Skip to main content
Log in

Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We show that the ABJM theory, which is an \( \mathcal{N} = {6} \) superconformal U(N) × U(N) Chern-Simons gauge theory, can be studied for arbitrary N at arbitrary coupling constant by applying a simple Monte Carlo method to the matrix model that can be derived from the theory by using the localization technique. This opens up the possibility of probing the quantum aspects of M-theory and testing the AdS4/CFT3 duality at the quantum level. Here we calculate the free energy, and confirm the N 3/2 scaling in the M-theory limit predicted from the gravity side. We also find that our results nicely interpolate the analytical formulae proposed previously in the M-theory and type IIA regimes. Furthermore, we show that some results obtained by the Fermi gas approach can be clearly understood from the constant map contribution obtained by the genus expansion. The method can be easily generalized to the calculations of BPS operators and to other theories that reduce to matrix models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. J.H. Schwarz, Superconformal Chern-Simons theories, JHEP 11 (2004) 078 [hep-th/0411077] [INSPIRE].

    Article  ADS  Google Scholar 

  3. O. Aharony, O. Bergman, D.L. Jafferis and J.M. Maldacena, \( \mathcal{N} = {6} \) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  7. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  9. N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. W. Bietenholz and J. Nishimura, Ginsparg-Wilson fermions in odd dimensions, JHEP 07 (2001) 015 [hep-lat/0012020] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. W. Bietenholz and P. Sodano, A Ginsparg-Wilson approach to lattice Chern-Simons theory, hep-lat/0305006 [INSPIRE].

  13. J. Giedt, Progress in four-dimensional lattice supersymmetry, Int. J. Mod. Phys. A 24 (2009) 4045 [arXiv:0903.2443] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. M. Hanada, L. Mannelli and Y. Matsuo, Large-N reduced models of supersymmetric quiver, Chern-Simons gauge theories and ABJM, JHEP 11 (2009) 087 [arXiv:0907.4937] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. T. Ishii, G. Ishiki, S. Shimasaki and A. Tsuchiya, N = 4 super Yang-Mills from the plane wave matrix model, Phys. Rev. D 78 (2008) 106001 [arXiv:0807.2352] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. H. Kawai, S. Shimasaki and A. Tsuchiya, Large-N reduction on group manifolds, Int. J. Mod. Phys. A 25 (2010) 3389 [arXiv:0912.1456] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. M. Honda, G. Ishiki, J. Nishimura and A. Tsuchiya, Testing the AdS/CFT correspondence by Monte Carlo calculation of BPS and non-BPS Wilson loops in 4d N = 4 super-Yang-Mills theory, PoS(Lattice 2011)244 [arXiv:1112.4274] [INSPIRE].

  18. J. Nishimura, Non-lattice simulation of supersymmetric gauge theories as a probe to quantum black holes and strings, PoS(LAT2009)016 [arXiv:0912.0327] [INSPIRE].

  19. M. Honda, G. Ishiki, S.-W. Kim, J. Nishimura and A. Tsuchiya, Supersymmetry non-renormalization theorem from a computer and the AdS/CFT correspondence, PoS(Lattice 2010)253 [arXiv:1011.3904] [INSPIRE].

  20. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [INSPIRE].

  21. J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in \( \mathcal{N} = {4} \) supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. N. Drukker and D.J. Gross, An exact prediction of \( \mathcal{N} = {4} \) SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, arXiv:1012.3210 [INSPIRE].

  25. N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-theorem: N = 2 field theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. S. Kim, The complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys. B 821 (2009) 241 [arXiv:0903.4172] [INSPIRE].

    Article  ADS  Google Scholar 

  28. Y. Imamura, D. Yokoyama and S. Yokoyama, Superconformal index for large-N quiver Chern-Simons theories, JHEP 08 (2011) 011 [arXiv:1102.0621] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. Y. Imamura and D. Yokoyama, N = 2 supersymmetric theories on squashed three-sphere, Phys. Rev. D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].

    ADS  Google Scholar 

  30. N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Mariño and P. Putrov, Exact results in ABJM theory from topological strings, JHEP 06 (2010) 011 [arXiv:0912.3074] [INSPIRE].

    Article  ADS  Google Scholar 

  32. N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-matrix models and tri-Sasaki Einstein spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].

    ADS  Google Scholar 

  34. N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].

    ADS  Google Scholar 

  36. H. Fuji, S. Hirano and S. Moriyama, Summing up all genus free energy of ABJM matrix model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. K. Okuyama, A note on the partition function of ABJM theory on S 3, Prog. Theor. Phys. 127 (2012) 229 [arXiv:1110.3555] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  38. M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. (2012) P03001 [arXiv:1110.4066] [INSPIRE].

  39. C. Kristjansen, M. Orselli and K. Zoubos, Non-planar ABJM theory and integrability, JHEP 03 (2009) 037 [arXiv:0811.2150] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, math.AG/9810173.

  42. M. Mariño, S. Pasquetti and P. Putrov, Large-N duality beyond the genus expansion, JHEP 07 (2010) 074 [arXiv:0911.4692] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Mariño, Chern-Simons theory, matrix integrals and perturbative three manifold invariants, Commun. Math. Phys. 253 (2004) 25 [hep-th/0207096] [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Aganagic, A. Klemm, M. Mariño and C. Vafa, Matrix model as a mirror of Chern-Simons theory, JHEP 02 (2004) 010 [hep-th/0211098] [INSPIRE].

    Article  ADS  Google Scholar 

  45. R. Dijkgraaf and C. Vafa, N = 1 supersymmetry, deconstruction and bosonic gauge theories, hep-th/0302011 [INSPIRE].

  46. R. Dijkgraaf, S. Gukov, V.A. Kazakov and C. Vafa, Perturbative analysis of gauged matrix models, Phys. Rev. D 68 (2003) 045007 [hep-th/0210238] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  47. R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. A. Cagnazzo, D. Sorokin and L. Wulff, String instanton in AdS 4 × C P 3, JHEP 05 (2010) 009 [arXiv:0911.5228] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. H. Ooguri, C. Vafa and E.P. Verlinde, Hartle-Hawking wave-function for flux compactifications, Lett. Math. Phys. 74 (2005) 311 [hep-th/0502211] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. J. Ambjørn, L. Chekhov, C.F. Kristjansen and Y. Makeenko, Matrix model calculations beyond the spherical limit, Nucl. Phys. B 404 (1993) 127 [Erratum ibid. B 449 (1995) 681] [hep-th/9302014] [INSPIRE].

  52. G. Akemann, Higher genus correlators for the Hermitian matrix model with multiple cuts, Nucl. Phys. B 482 (1996) 403 [hep-th/9606004] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. O. Bergman and S. Hirano, Anomalous radius shift in AdS 4 /CFT 3, JHEP 07 (2009) 016 [arXiv:0902.1743] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. N. Kawahara, J. Nishimura and A. Yamaguchi, Monte Carlo approach to nonperturbative strings — demonstration in noncritical string theory, JHEP 06 (2007) 076 [hep-th/0703209] [INSPIRE].

    Article  ADS  Google Scholar 

  55. A. Kapustin, B. Willett and I. Yaakov, Nonperturbative tests of three-dimensional dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. W. Krauth, H. Nicolai and M. Staudacher, Monte Carlo approach to M-theory, Phys. Lett. B 431 (1998) 31 [hep-th/9803117] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  57. I. Kanamori, A method for measuring the Witten index using lattice simulation, Nucl. Phys. B 841 (2010) 426 [arXiv:1006.2468] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. N. Halmagyi and V. Yasnov, The spectral curve of the lens space matrix model, JHEP 11 (2009) 104 [hep-th/0311117] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. I.S. Gradshteyn and M. Ryzhik, Table of integrals, series, and products, Academic Press, New York U.S.A. (1980).

    MATH  Google Scholar 

  60. M.-X. Huang and A. Klemm, Holomorphic anomaly in gauge theories and matrix models, JHEP 09 (2007) 054 [hep-th/0605195] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. K. Becker, M. Becker and A. Strominger, Five-branes, membranes and nonperturbative string theory, Nucl. Phys. B 456 (1995) 130 [hep-th/9507158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. H.J. Rothe, Lattice gauge theories: an introduction, World Sci. Lect. Notes Phys. 74 (2005) 1 [INSPIRE].

    MathSciNet  Google Scholar 

  63. M.A. Clark and A.D. Kennedy, The RHMC algorithm for two flavors of dynamical staggered fermions, Nucl. Phys. Proc. Suppl. 129 (2004) 850 [hep-lat/0309084] [INSPIRE].

    Article  ADS  Google Scholar 

  64. M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 191602 [arXiv:0811.3102] [INSPIRE].

    Article  ADS  Google Scholar 

  65. M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya, Monte Carlo studies of matrix theory correlation functions, Phys. Rev. Lett. 104 (2010) 151601 [arXiv:0911.1623] [INSPIRE].

    Article  ADS  Google Scholar 

  66. M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya, Direct test of the gauge-gravity correspondence for Matrix theory correlation functions, JHEP 12 (2011) 020 [arXiv:1108.5153] [INSPIRE].

    Article  ADS  Google Scholar 

  67. D.R. Gulotta, C.P. Herzog and S.S. Pufu, From necklace quivers to the F-theorem, operator counting and T (U(N)), JHEP 12 (2011) 077 [arXiv:1105.2817] [INSPIRE].

    Article  ADS  Google Scholar 

  68. D.R. Gulotta, J.P. Ang and C.P. Herzog, Matrix models for supersymmetric Chern-Simons theories with an ADE classification, JHEP 01 (2012) 132 [arXiv:1111.1744] [INSPIRE].

    Article  ADS  Google Scholar 

  69. D.R. Gulotta, C.P. Herzog and T. Nishioka, The ABCDEF’s of matrix models for supersymmetric Chern-Simons theories, JHEP 04 (2012) 138 [arXiv:1201.6360] [INSPIRE].

    Article  ADS  Google Scholar 

  70. M. Hanada, C. Hoyos and H. Shimada, On a new type of orbifold equivalence and M-theoretic AdS 4 /CFT 3 duality, Phys. Lett. B 707 (2012) 394 [arXiv:1109.6127] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  71. M. Hanada, C. Hoyos and A. Karch, Generating new dualities through the orbifold equivalence: a demonstration in ABJM and four-dimensional quivers, JHEP 01 (2012) 068 [arXiv:1110.3803] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masazumi Honda.

Additional information

ArXiv ePrint: 1202.5300

The simulation code is available upon request to mhonda@post.kek.jp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanada, M., Honda, M., Honma, Y. et al. Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant. J. High Energ. Phys. 2012, 121 (2012). https://doi.org/10.1007/JHEP05(2012)121

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2012)121

Keywords

Navigation