Skip to main content
Log in

Topological Strings and Integrable Hierarchies

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the topological B-model on local Calabi-Yau geometries. We show how one can solve for the amplitudes by using -algebra symmetries which encode the symmetries of holomorphic diffeomorphisms of the Calabi-Yau. In the highly effective fermionic/brane formulation this leads to a free fermion description of the amplitudes. Furthermore we argue that topological strings on Calabi-Yau geometries provide a unifying picture connecting non-critical (super)strings, integrable hierarchies, and various matrix models. In particular we show how the ordinary matrix model, the double scaling limit of matrix models, and Kontsevich-like matrix model are all related and arise from studying branes in specific local Calabi-Yau three-folds. We also show how an A-model topological string on P1 and local toric threefolds (and in particular the topological vertex) can be realized and solved as B-model topological string amplitudes on a Calabi-Yau manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dijkgraaf, R.: Intersection theory, integrable hierarchies and topological field theory. In: New symmetry principles in quantum field theory, J. Frohlich et al. (ed), London-New York: Plenum Press, 1993, p. 95

  2. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Witten, E.: Ground ring of two-dimensional string theory. Nucl. Phys. B 373, 187 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Dijkgraaf, R., Vafa, C.: Matrix models, topological strings, and supersymmetric gauge theories. Nucl. Phys. B 644, 3 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  5. Dijkgraaf, R., Vafa, C.: On geometry and matrix models. Nucl. Phys. B 644, 21 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  6. Kostov, I.K.: Conformal field theory techniques in random matrix models. Based on talk at the Third claude Itzykson Meeting, Paris, July 27–29, 1998, http://arxiv.org/list/hep-th/9907060, 1999

  7. Chiantese, S., Klemm, A., Runkel, I.: Higher order loop equations for A(r) and D(r) quiver matrix models. JHEP 0403, 033 (2004)

    ADS  MathSciNet  Google Scholar 

  8. Ghoshal, D., Vafa, C.: c = 1 string as the topological theory of the conifold. Nucl. Phys. B 453, 121 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Aganagic, M., Klemm, A., Mariño, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254, 425–478 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Hori, K., Vafa, C.: Mirror symmetry. http://arxiv.org/list/hep-th/0002222, 2000

  11. Witten, E.: Quantum background independence in string theory. http://arxiv.org/list/hep-th/9306122], 1993

  12. Dijkgraaf, R., Moore, G.W., Plesser, R.: The Partition function of 2-D string theory. Nucl. Phys. B 394, 356 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  13. Calabi, E.: Métriques Kählériennes et Fibrés Holomorphes. Ann. scient. Éc. Norm. Suple. 12, 269 (1979); Tian, G., Yau, S.-T.: Existence of Kähler-Einstein Metrics on complete Kähler manifolds and their applications to algebraic geometry. In: Mathematical Aspect of String Theory, 1986 at UCSD, S.T. Yau, ed. Singapore: World Scientific 1987, Complete Kähler manifolds with zero Ricci curvature, I. J AMS 3(3), 579–609 (1990), Complete Kähler manifolds with zero Ricci curvature, II. Inv. Math. 106, 27–60 (1991)

    MathSciNet  Google Scholar 

  14. Aganagic, M., Vafa, C.: Mirror symmetry, D-branes and counting holomorphic discs. http://arxiv.org/list/hep-th/0012041, 2000

  15. Vafa, C.: Brane/anti-brane systems and U(N|M) supergroup. http://arxiv.org/list/hep-th/0101218, 2001

  16. Witten, E.: Five-brane effective action in M-theory. J. Geom. Phys. 22, 103 (1997)

    MATH  MathSciNet  Google Scholar 

  17. Nekrasov, N., Okounkov, A.: Seiberg-Witten theory and random partitions. http://arxiv.org/list/hep-th/0306238, 2003

  18. Iqbal, A., Okounkov, A.: Private communication

  19. Liu, C.-C.M., Liu, K., Zhou, J.: A proof of a conjecture of Mariño-Vafa on Hodge integrals. J. Diff. Geom. 65, 289–340 (2004)``A formula of two-partition Hodge integrals.'' http://arxiv./org/list/math.AG/0310272, 2003

    Google Scholar 

  20. Low, I., Manohar, A.V.: Spontaneously broken spacetime symmetries and Goldstone's theorem. Phys. Rev. Lett. 88, 101602 (2002)

    Article  ADS  Google Scholar 

  21. Gopakumar, R., Vafa, C.: On the gauge theory/geometry correspondence. Adv. Theor. Math. Phys. 3, 1415 (1999)

    MATH  MathSciNet  Google Scholar 

  22. Cachazo, F., Intriligator, K.A., Vafa, C.: A large N duality via a geometric transition. Nucl. Phys. B 603, 3 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Fukuma, M., Kawai, H., Nakayama, R.: Continuum Schwinger-Dyson equations and universal structures in two-dimensional quantum gravity. Int. J. Mod. Phys. A 6, 1385 (1991); Infinite dimensional grassmannian structure of two-dimensional quantum gravity. Commun. Math. Phys. 143, 371 (1992)

    MathSciNet  Google Scholar 

  24. Itzykson, C., Zuber, J.B.: The planar approximation. 2. J. Math. Phys. 21, 411 (1980)

    Google Scholar 

  25. Ooguri, H., Vafa, C.: Knot invariants and topological strings. Nucl. Phys. B 577, 419 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Neitzke, A., Vafa, C.: Work in progress

  27. Dijkgraaf, R., Verlinde, H., Verlinde, E.: Loop equations and virasoro constraints in nonperturbative 2-d quantum gravity. Nucl. Phys. B 348, 435 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  28. Cachazo, F., Katz, S., Vafa, C.: Geometric transitions and N = 1 quiver theories. http://arxiv./org/list/hep-th/0108120, 2001

  29. Cachazo, F., Fiol, B., Intriligator, K.A., Katz, S., Vafa, C.: A geometric unification of dualities. Nucl. Phys. B 628, 3 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Kharchev, S., Marshakov, A., Mironov, A., Morozov, A., Pakuliak, S.: Conformal matrix models as an alternative to conventional multimatrix models. Nucl. Phys. B 404, 717 (1993); Morozov, A.: Integrability and matrix models. Phys. Usp. 37, 1 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Brézin, E., Kazakov, V.A.: Exactly solvable field theories of closed strings. Phys. Lett. B 236, 144 (1990)

    ADS  MathSciNet  Google Scholar 

  32. Douglas, M.R., Shenker, S.H.: Strings in less than one-dimension. Nucl. Phys. B 335, 635 (1990)

    Article  ADS  Google Scholar 

  33. Gross, D.J., Migdal, A.A.: A nonperturbative treatment of two-dimensional quantum gravity. Nucl. Phys. B 340, 333 (1990)

    Article  ADS  Google Scholar 

  34. Douglas, M.R.: Strings in less than one-dimension and the generalized KdV hierarchies. Phys. Lett. B 238, 176 (1990)

    ADS  MathSciNet  Google Scholar 

  35. Witten, E.: Two-dimensional gravity and intersection theory on moduli space. Surveys Diff. Geom. 1, 243 (1991)

    MATH  MathSciNet  Google Scholar 

  36. Li, K.: Topological gravity with minimal matter. Nucl. Phys. B 354, 711 (1991); Recursion relations in topological gravity with minimal matter. Nucl. Phys. B 354, 725 (1991)

    ADS  Google Scholar 

  37. Dijkgraaf, R., Verlinde, H., Verlinde, E.: Topological Strings In d<1. Nucl. Phys. B 352, 59 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  38. Martinec, E.J.: Criticality, Catastrophes And Compactifications. In: Brink, L. (ed.) et al., Physics and mathematics of strings, Singapore: World Scientific, 1990 p. 389; Vafa, C., Warner, N.P.: Catastrophes And The Classification Of Conformal Theories. Phys. Lett. B 218, 51 (1989)

    MathSciNet  Google Scholar 

  39. Ooguri, H., Vafa, C.: Two-dimensional black hole and singularities of CY manifolds. Nucl. Phys. B 463, 55 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Kostov, I.K.: String equation for string theory on a circle. Nucl. Phys. B 624, 146 (2002); Alexandrov, S.Y., Kazakov, V.A., Kostov, I.K.: Time-dependent backgrounds of 2D string theory. Nucl. Phys. B 640, 119 (2002); Kostov, I.K.: Integrable flows in c = 1 string theory. J. Phys. A 36, 3153 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Imbimbo, C., Mukhi, S.: The Topological matrix model of c = 1 string. Nucl. Phys. B 449, 553 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Eguchi, T., Yang, S.K.: The Topological CP1 model and the large N matrix integral. Mod. Phys. Lett. A 9, 2893 (1994); Eguchi, T., Hori, K., Yang, S.K.: Topological sigma models and large N matrix integral. Int. J. Mod. Phys. A 10, 4203 (1995)

    MATH  MathSciNet  Google Scholar 

  43. Okounkov, A., Pandharipande, R.: The equivariant Gromov-Witten theory of P1. http://arxiv./org/list/math.AG/0207233, 2002

  44. Iqbal, A., Kashani-Poor, A.K.: SU(N) geometries and topological string amplitudes. http://arxiv./org/list/hep-th/0306032, 2003

  45. Diaconescu, D.E., Florea, B.: Localization and gluing of topological amplitudes. Commun. Math. Phys. 257, 119–149 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  46. Okounkov, A., Reshetikhin, N., Vafa, C.: Quantum Calabi-Yau and classical crystals. http://arxiv.org/list/hep-th/0309208, 2003

  47. Eguchi, T., Kanno, H.: Topological strings and Nekrasov's formulas. JHEP 0312, 006 (2003)

    ADS  MathSciNet  Google Scholar 

  48. Hollowood, T.J., Iqbal, A., Vafa, C.: Matrix models, geometric engineering and elliptic genera. http://arxiv.org/list/hep-th/0310272, 2003

  49. Zhou, J.: Curve counting and instanton counting. http://arxiv.org/list/math.AG/0311237, 2003

  50. Aganagic, M., Mariño, M., Vafa, C.: All loop topological string amplitudes from Chern-Simons theory. Commun. Math. Phys. 247, 467–512 (2004)

    ADS  MATH  MathSciNet  Google Scholar 

  51. Faddeev, L.D., Kashaev, R.M.: Quantum Dilogarithm. Mod. Phys. Lett. A 9, 427 (1994)

    MATH  MathSciNet  Google Scholar 

  52. Miwa, T., Jimbo, M., Date, E.: Solitons. Cambridge: Cambridge University Press, 2000

  53. Zhou, J.: A conjecture on Hodge integrals. http://arxiv.org/list/math.AG/0310282, 2003

  54. Kac, V.G., van de Leur, J.W.: The n-Component KP Hierarchy And Representation Theory. J. Math. Phys. 44, 3245 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. Zhou, J.: Hodge integrals and integrable hierarchies. http://arxiv.org/list/math.AG/0310408, 2003

  56. Aganagic, M., Klemm, A., Vafa, C.: Disk instantons, mirror symmetry and the duality web. Z. Naturforsch. A 57, 1 (2002)

    MathSciNet  Google Scholar 

  57. McGreevy, J., Verlinde, H.: Strings from tachyons: The c = 1 matrix reloaded. JHEP 0312, 054 (2003); Takayanagi, T., Toumbas, N.: A matrix model dual of type 0B string theory in two dimensions. JHEP 0307, 064 (2003); Douglas, M.R., Klebanov, I.R., Kutasov, D., Maldacena, J., Martinec, E., Seiberg, N.: A new hat for the c = 1 matrix model. http://arxiv.org/list/hep-th/0307195, 2003

    ADS  MathSciNet  Google Scholar 

  58. Macdonald, I.G.: Symmetric functions and Hall polynomials. Oxford: Oxford University Press, 1995

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N.A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aganagic, M., Dijkgraaf, R., Klemm, A. et al. Topological Strings and Integrable Hierarchies. Commun. Math. Phys. 261, 451–516 (2006). https://doi.org/10.1007/s00220-005-1448-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1448-9

Keywords

Navigation