Skip to main content
Log in

Exact results on the ABJM Fermi gas

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the Fermi gas quantum mechanics associated to the ABJM matrix model. We develop a method to compute the grand partition function of the ABJM theory, and compute exactly the partition function Z(N) up to N = 9 with the Chern-Simons level k = 1. We find that the eigenvalue problem of this quantum mechanical system is reduced to the diagonalization of a certain Hankel matrix. In reducing the number of integrations by commuting coordinates and momenta, we find an exact relation concerning the grand partition function, which is interesting on its own right and very helpful for determining the partition function. We also study the TBA-type integral equations that allow us to compute the grand partition function numerically. Surprisingly, all of our exact partition functions are written in terms of polynomials of π −1 with rational coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. M.K. Benna, I.R. Klebanov and T. Klose, Charges of Monopole Operators in Chern-Simons Yang-Mills Theory, JHEP 01 (2010) 110 [arXiv:0906.3008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Gustavsson and S.-J. Rey, Enhanced N = 8 Supersymmetry of ABJM Theory on R 8 and R 8 /Z 2, arXiv:0906.3568 [INSPIRE].

  6. O.-K. Kwon, P. Oh and J. Sohn, Notes on Supersymmetry Enhancement of ABJM Theory, JHEP 08 (2009) 093 [arXiv:0906.4333] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, JHEP 05 (2011) 015 [arXiv:1007.4861] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. N. Halmagyi and V. Yasnov, The Spectral curve of the lens space matrix model, JHEP 11 (2009) 104 [hep-th/0311117] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  12. O. Bergman and S. Hirano, Anomalous radius shift in AdS 4 /CFT 3, JHEP 07 (2009) 016 [arXiv:0902.1743] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].

    Article  ADS  Google Scholar 

  15. H. Fuji, S. Hirano and S. Moriyama, Summing Up All Genus Free Energy of ABJM Matrix Model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. H. Ooguri, C. Vafa and E.P. Verlinde, Hartle-Hawking wave-function for flux compactifications, Lett. Math. Phys. 74 (2005) 311 [hep-th/0502211] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE].

    Article  Google Scholar 

  18. M. Mariño and P. Putrov, Interacting fermions and N = 2 Chern-Simons-matter theories, arXiv:1206.6346 [INSPIRE].

  19. A. Klemm, M. Mariño, M. Schiereck and M. Soroush, ABJM Wilson loops in the Fermi gas approach, arXiv:1207.0611 [INSPIRE].

  20. H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Ruijsenaars and H. Schneider, A New Class Of Integrable Systems And Its Relation To Solitons, Annals Phys. 170 (1986) 370 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. S. Odake and R. Sasaki, Discrete Quantum Mechanics, J. Phys. A 44 (2011) 353001 [arXiv:1104.0473] [INSPIRE].

    MathSciNet  Google Scholar 

  23. K. Okuyama, A Note on the Partition Function of ABJM theory on S 3, Prog. Theor. Phys. 127 (2012) 229 [arXiv:1110.3555] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. C.A. Tracy and H. Widom, Proofs of two conjectures related to the thermodynamic Bethe ansatz, Commun. Math. Phys. 179 (1996) 667 [solv-int/9509003] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. A.B. Zamolodchikov, Painleve III and 2 − D polymers, Nucl. Phys. B 432 (1994) 427 [hep-th/9409108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].

    ADS  Google Scholar 

  27. A. Kapustin, B. Willett and I. Yaakov, Nonperturbative Tests of Three-Dimensional Dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. I.K. Kostov, Solvable statistical models on a random lattice, Nucl. Phys. Proc. Suppl. 45A (1996) 13 [hep-th/9509124] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. V.A. Kazakov, I.K. Kostov and N.A. Nekrasov, D particles, matrix integrals and KP hierarchy, Nucl. Phys. B 557 (1999) 413 [hep-th/9810035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. J. Hoppe, V. Kazakov and I.K. Kostov, Dimensionally reduced SYM 4 as solvable matrix quantum mechanics, Nucl. Phys. B 571 (2000) 479 [hep-th/9907058] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Hanada, M. Honda, Y. Honma, J. Nishimura, S. Shiba and Y. Yoshida, Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant, JHEP 05 (2012) 121 [arXiv:1202.5300] [INSPIRE].

    Article  ADS  Google Scholar 

  32. G.T. Horowitz and A. Strominger, Translations As Inner Derivations And Associativity Anomalies In Open String Field Theory, Phys. Lett. B 185 (1987) 45 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. H. Hata and S. Moriyama, Observables as twist anomaly in vacuum string field theory, JHEP 01 (2002) 042 [hep-th/0111034] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. L. Rastelli, A. Sen and B. Zwiebach, Vacuum string field theory, hep-th/0106010 [INSPIRE].

  36. L. Rastelli, A. Sen and B. Zwiebach, Star algebra spectroscopy, JHEP 03 (2002) 029 [hep-th/0111281] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. R. Dijkgraaf, R. Gopakumar, H. Ooguri and C. Vafa, Baby universes in string theory, Phys. Rev. D 73 (2006) 066002 [hep-th/0504221] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. P. Dorey and R. Tateo, Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations, J. Phys. A 32 (1999) L419 [hep-th/9812211] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Spectral determinants for Schrödinger equation and Q operators of conformal field theory, J. Statist. Phys. 102 (2001) 567 [hep-th/9812247] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. A. Voros, Spectral Zeta Functions, Adv. Stud. Pure Math. 21 (1992) 327.

    MathSciNet  Google Scholar 

  41. A. Voros, Exact quantization condition for anharmonic oscillators (in one dimension), J. Phys. A 27 (1994) 4653.

    MathSciNet  ADS  Google Scholar 

  42. A. Voros, Airy function - exact WKB results for potentials of odd degree, J. Phys, A 32 (1999) 1301 [math-ph/9811001].

    MathSciNet  ADS  Google Scholar 

  43. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. 2. Q operator and DDV equation, Commun. Math. Phys. 190 (1997) 247 [hep-th/9604044] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanefumi Moriyama.

Additional information

ArXiv ePrint: 1207.4283

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatsuda, Y., Moriyama, S. & Okuyama, K. Exact results on the ABJM Fermi gas. J. High Energ. Phys. 2012, 20 (2012). https://doi.org/10.1007/JHEP10(2012)020

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)020

Keywords

Navigation