Skip to main content
Log in

Unquenched massive flavors and flows in Chern-Simons matter theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct a holographic dual to the three-dimensional ABJM Chern-Simons matter theory with unquenched massive flavors. The flavor degrees of freedom are introduced by means of D6-branes extended along the gauge theory directions and delocalized in the internal space. To find the solution we have to solve the supergravity equations of motion with the source terms introduced by the D6-branes. The background we get is a running solution representing the renormalization group flow between two fixed points, at the IR and the UV, in both of which the geometry is of the form AdS 4 × \( {{\mathcal{M}}_6} \), where \( {{\mathcal{M}}_6} \) is a six-dimensional compact manifold. Along the flow, \( \mathcal{N} \) = 1 supersymmetry is preserved and the flavor group is Abelian. The flow is generated by changing the quark mass m q . When m q → ∞ we recover the original unflavored ABJM solution, while for m q → 0 our solution becomes asymptotically equivalent to the one found recently for massless smeared flavors. We study the effects of the dynamical quarks as their mass is varied on different observables, such as the holographic entanglement entropy, the quark-antiquark potential, the two-point functions of high dimension bulk operators, and the mass spectrum of mesons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  3. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  6. J. Bagger and N. Lambert, Comments on multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. I.R. Klebanov and G. Torri, M2-branes and AdS/CFT, Int. J. Mod. Phys. A 25 (2010) 332 [arXiv:0909.1580] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. T. Klose, Review of AdS/CFT integrability, chapter IV.3: N = 6 Chern-Simons and strings on AdS 4 × CP 3, Lett. Math. Phys. 99 (2012) 401 [arXiv:1012.3999] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].

    MATH  Google Scholar 

  11. J. Bagger, N. Lambert, S. Mukhi and C. Papageorgakis, Multiple membranes in M-theory, Phys. Rept. 527 (2013) 1 [arXiv:1203.3546] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. S. Hohenegger and I. Kirsch, A note on the holography of Chern-Simons matter theories with flavour, JHEP 04 (2009) 129 [arXiv:0903.1730] [INSPIRE].

    Article  ADS  Google Scholar 

  13. D. Gaiotto and D.L. Jafferis, Notes on adding D6 branes wrapping Rp 3 in AdS 4 × CP 3, JHEP 11 (2012) 015 [arXiv:0903.2175] [INSPIRE].

    Article  ADS  Google Scholar 

  14. Y. Hikida, W. Li and T. Takayanagi, ABJM with flavors and FQHE, JHEP 07 (2009) 065 [arXiv:0903.2194] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. K. Jensen, More holographic Berezinskii-Kosterlitz-Thouless transitions, Phys. Rev. D 82 (2010) 046005 [arXiv:1006.3066] [INSPIRE].

    ADS  Google Scholar 

  16. M. Ammon, J. Erdmenger, R. Meyer, A. O’Bannon and T. Wrase, Adding flavor to AdS 4 /CF T 3, JHEP 11 (2009) 125 [arXiv:0909.3845] [INSPIRE].

    Article  ADS  Google Scholar 

  17. G. Zafrir, Embedding massive flavor in ABJM, JHEP 10 (2012) 056 [arXiv:1202.4295] [INSPIRE].

    Article  ADS  Google Scholar 

  18. N. Jokela, J. Mas, A.V. Ramallo and D. Zoakos, Thermodynamics of the brane in Chern-Simons matter theories with flavor, JHEP 02 (2013) 144 [arXiv:1211.0630] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. F. Bigazzi, R. Casero, A. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography and four-dimensional CFTs with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. G. Veneziano, Some aspects of a unified approach to gauge, dual and Gribov theories, Nucl. Phys. B 117 (1976) 519 [INSPIRE].

    Article  ADS  Google Scholar 

  21. R. Casero, C. Núñez and A. Paredes, Towards the string dual of N = 1 SQCD-like theories, Phys. Rev. D 73 (2006) 086005 [hep-th/0602027] [INSPIRE].

    ADS  Google Scholar 

  22. R. Casero, C. Núñez and A. Paredes, Elaborations on the string dual to N = 1 SQCD, Phys. Rev. D 77 (2008) 046003 [arXiv:0709.3421] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  23. C. Hoyos-Badajoz, C. Núñez and I. Papadimitriou, Comments on the string dual to N = 1 SQCD, Phys. Rev. D 78 (2008) 086005 [arXiv:0807.3039] [INSPIRE].

    ADS  Google Scholar 

  24. E. Conde, J. Gaillard and A.V. Ramallo, On the holographic dual of N = 1 SQCD with massive flavors, JHEP 10 (2011) 023 [Erratum ibid. 1308 (2013) 082] [arXiv:1107.3803] [INSPIRE].

  25. F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Unquenched flavors in the Klebanov-Witten model, JHEP 02 (2007) 090 [hep-th/0612118] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Backreacting flavors in the Klebanov-Strassler background, JHEP 09 (2007) 109 [arXiv:0706.1238] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Ihl, A. Kundu and S. Kundu, Back-reaction of non-supersymmetric probes: phase transition and stability, JHEP 12 (2012) 070 [arXiv:1208.2663] [INSPIRE].

    Article  ADS  Google Scholar 

  28. F. Bigazzi et al., D3-D7 quark-gluon plasmas, JHEP 11 (2009) 117 [arXiv:0909.2865] [INSPIRE].

    Article  ADS  Google Scholar 

  29. F. Bigazzi, A.L. Cotrone and J. Tarrio, Hydrodynamics of fundamental matter, JHEP 02 (2010) 083 [arXiv:0912.3256] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  30. F. Bigazzi, A.L. Cotrone, J. Mas, D. Mayerson and J. Tarrio, D3-D7 quark-gluon plasmas at finite baryon density, JHEP 04 (2011) 060 [arXiv:1101.3560] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  31. A. Magana, J. Mas, L. Mazzanti and J. Tarrio, Probes on D3-D7 quark-gluon plasmas, JHEP 07 (2012) 058 [arXiv:1205.6176] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. C. Núñez, A. Paredes and A.V. Ramallo, Unquenched flavor in the gauge/gravity correspondence, Adv. High Energy Phys. 2010 (2010) 196714 [arXiv:1002.1088] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  33. E. Conde and A.V. Ramallo, On the gravity dual of Chern-Simons-matter theories with unquenched flavor, JHEP 07 (2011) 099 [arXiv:1105.6045] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. M.S. Bianchi, S. Penati and M. Siani, Infrared stability of ABJ-like theories, JHEP 01 (2010) 080 [arXiv:0910.5200] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. M.S. Bianchi, S. Penati and M. Siani, Infrared stability of N = 2 Chern-Simons matter theories, JHEP 05 (2010) 106 [arXiv:0912.4282] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of freedom, JHEP 04 (2013) 162 [arXiv:1202.2070] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].

    ADS  Google Scholar 

  41. D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 field theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-theorem without supersymmetry, JHEP 10 (2011) 038 [arXiv:1105.4598] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Entanglement entropy of 3D conformal gauge theories with many flavors, JHEP 05 (2012) 036 [arXiv:1112.5342] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].

    ADS  Google Scholar 

  45. R. Bryand and S. Salamon, On the construction of some complete metrices with expectional holonomy, Duke Math. J. 58 (1989) 829 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  46. G. Gibbons, D.N. Page and C. Pope, Einstein metrics on S 3 R 3 and R 4 bundles, Commun. Math. Phys. 127 (1990) 529 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  47. M. Atiyah and E. Witten, M theory dynamics on a manifold of G 2 holonomy, Adv. Theor. Math. Phys. 6 (2003) 1 [hep-th/0107177] [INSPIRE].

    Article  MATH  Google Scholar 

  48. R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  49. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. H. Liu and M. Mezei, Probing renormalization group flows using entanglement entropy, arXiv:1309.6935 [INSPIRE].

  51. A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006) 110405 [INSPIRE].

    Article  ADS  Google Scholar 

  53. J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and Anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  56. J. Louko, D. Marolf and S.F. Ross, On geodesic propagators and black hole holography, Phys. Rev. D 62 (2000) 044041 [hep-th/0002111] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  57. P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  58. D. Gaiotto and A. Tomasiello, The gauge dual of Romans mass, JHEP 01 (2010) 015 [arXiv:0901.0969] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. D. Gaiotto and A. Tomasiello, Perturbing gauge/gravity duals by a Romans mass, J. Phys. A 42 (2009) 465205 [arXiv:0904.3959] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  60. O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall effect in a holographic model, JHEP 10 (2010) 063 [arXiv:1003.4965] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  61. O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP 10 (2011) 034 [arXiv:1106.3883] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  62. N. Jokela, G. Lifschytz and M. Lippert, Magneto-roton excitation in a holographic quantum Hall fluid, JHEP 02 (2011) 104 [arXiv:1012.1230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  63. N. Jokela, G. Lifschytz and M. Lippert, Magnetic effects in a holographic Fermi-like liquid, JHEP 05 (2012) 105 [arXiv:1204.3914] [INSPIRE].

    Article  ADS  Google Scholar 

  64. N. Jokela, G. Lifschytz and M. Lippert, Holographic anyonic superfluidity, JHEP 10 (2013) 014 [arXiv:1307.6336] [INSPIRE].

    Article  ADS  Google Scholar 

  65. N. Jokela, M. Jarvinen and M. Lippert, A holographic quantum Hall model at integer filling, JHEP 05 (2011) 101 [arXiv:1101.3329] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  66. N. Jokela, M. Jarvinen and M. Lippert, Fluctuations of a holographic quantum Hall fluid, JHEP 01 (2012) 072 [arXiv:1107.3836] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  67. N. Jokela, M. Jarvinen and M. Lippert, Fluctuations and instabilities of a holographic metal, JHEP 02 (2013) 007 [arXiv:1211.1381] [INSPIRE].

    Article  ADS  Google Scholar 

  68. J.G. Russo and K. Sfetsos, Rotating D3-branes and QCD in three-dimensions, Adv. Theor. Math. Phys. 3 (1999) 131 [hep-th/9901056] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso V. Ramallo.

Additional information

ArXiv ePrint: 1309.4453

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bea, Y., Conde, E., Jokela, N. et al. Unquenched massive flavors and flows in Chern-Simons matter theories. J. High Energ. Phys. 2013, 33 (2013). https://doi.org/10.1007/JHEP12(2013)033

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)033

Keywords

Navigation