Skip to main content
Log in

A refinement of entanglement entropy and the number of degrees of freedom

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We introduce a “renormalized entanglement entropy” which is intrinsically UV finite and is most sensitive to the degrees of freedom at the scale of the size R of the entangled region. We illustrated the power of this construction by showing that the qualitative behavior of the entanglement entropy for a non-Fermi liquid can be obtained by simple dimensional analysis. We argue that the functional dependence of the “renormalized entanglement entropy” on R can be interpreted as describing the renormalization group flow of the entanglement entropy with distance scale. The corresponding quantity for a spherical region in the vacuum, has some particularly interesting properties. For a conformal field theory, it reduces to the previously proposed central charge in all dimensions, and for a general quantum field theory, it interpolates between the central charges of the UV and IR fixed points as R is varied from zero to infinity. We conjecture that in three (spacetime) dimensions, it is always non-negative and monotonic, and provides a measure of the number of degrees of freedom of a system at scale R. In four dimensions, however, we find examples in which it is neither monotonic nor non-negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys. 80 (2008) 517 [quant-ph/0703044] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. J. Eisert, M. Cramer and M. Plenio, Area laws for the entanglement entropya review, Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. M.P. Hertzberg and F. Wilczek, Some calculable contributions to entanglement entropy, Phys. Rev. Lett. 106 (2011) 050404 [arXiv:1007.0993] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. H. Casini and M. Huerta, A Finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. H. Casini and M. Huerta, A c-theorem for the entanglement entropy, J. Phys. A 40 (2007) 7031 [cond-mat/0610375] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. A. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].

  9. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. J.L. Cardy, Is there a c-theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].

    ADS  Google Scholar 

  12. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-theorem: N = 2 field theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-theorem without supersymmetry, JHEP 10 (2011) 038 [arXiv:1105.4598] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Entanglement entropy of 3 − D conformal gauge theories with many flavors, JHEP 05 (2012) 036 [arXiv:1112.5342] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. T. Grover, A.M. Turner and A. Vishwanath, Entanglement entropy of gapped phases and topological order in three dimensions, Phys. Rev. B 84 (2011) 195120 [arXiv:1108.4038] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613].

    Article  ADS  Google Scholar 

  19. A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. B. Swingle and T. Senthil, Universal crossovers between entanglement entropy and thermal entropy, Phys. Rev. B 87 (2013) 045123 [arXiv:1112.1069] [INSPIRE].

    Article  ADS  Google Scholar 

  21. N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

    Article  ADS  Google Scholar 

  23. E. Shaghoulian, Holographic entanglement entropy and Fermi surfaces, JHEP 05 (2012) 065 [arXiv:1112.2702] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. N. Iizuka et al., Bianchi attractors: a classification of extremal black brane geometries, JHEP 07 (2012) 193 [arXiv:1201.4861] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. S.-S. Lee, Low-energy effective theory of Fermi surface coupled with U(1) gauge field in 2+1 dimensions, Phys. Rev. B 80 (2009) 165102 [arXiv:0905.4532].

    Article  ADS  Google Scholar 

  26. M.M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96 (2006) 010404 [quant-ph/0503219] [INSPIRE].

    Article  ADS  Google Scholar 

  27. D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the Widom conjecture, Phys. Rev. Lett. 96 (2006) 100503 [quant-ph/0504151].

    Article  MathSciNet  ADS  Google Scholar 

  28. B. Swingle, Entanglement Entropy and the Fermi Surface, Phys. Rev. Lett. 105 (2010) 050502 [arXiv:0908.1724] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. Y. Zhang, T. Grover and A. Vishwanath, Entanglement entropy of critical spin liquids, Phys. Rev. Lett. 107 (2011) 067202 [arXiv:1102.0350] [INSPIRE].

    Article  ADS  Google Scholar 

  30. P. Calabrese, M. Mintchev and E. Vicari, Entanglement entropies in free fermion gases for arbitrary dimension, Europhys. Lett. 97 (2012) 20009 [arXiv:1110.6276] [INSPIRE].

    Article  ADS  Google Scholar 

  31. C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    Article  Google Scholar 

  34. H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].

    MathSciNet  Google Scholar 

  35. A. Cappelli, D. Friedan and J.I. Latorre, C-theorem and spectral representation, Nucl. Phys. B 352 (1991) 616 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. Z. Komargodski, The constraints of conformal symmetry on RG flows, JHEP 07 (2012) 069 [arXiv:1112.4538] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Huerta, Numerical determination of the entanglement entropy for free fields in the cylinder, Phys. Lett. B 710 (2012) 691 [arXiv:1112.1277] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  Google Scholar 

  44. T. Albash and C.V. Johnson, Holographic entanglement entropy and renormalization group flow, JHEP 02 (2012) 095 [arXiv:1110.1074] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].

    Article  ADS  Google Scholar 

  46. J.T. Liu, W. Sabra and Z. Zhao, Holographic c-theorems and higher derivative gravity, Phys. Rev. D 85 (2012) 126004 [arXiv:1012.3382] [INSPIRE].

    ADS  Google Scholar 

  47. A. Sinha, On higher derivative gravity, c-theorems and cosmology, Class. Quant. Grav. 28 (2011) 085002 [arXiv:1008.4315] [INSPIRE].

    Article  ADS  Google Scholar 

  48. M.F. Paulos, Holographic phase space: c-functions and black holes as renormalization group flows, JHEP 05 (2011) 043 [arXiv:1101.5993] [INSPIRE].

    Article  ADS  Google Scholar 

  49. D. Freedman, S. Gubser, K. Pilch and N. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  50. L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, The supergravity dual of N = 1 super Yang-Mills theory, Nucl. Phys. B 569 (2000) 451 [hep-th/9909047] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. D. Freedman, S. Gubser, K. Pilch and N. Warner, Continuous distributions of D3-branes and gauged supergravity, JHEP 07 (2000) 038 [hep-th/9906194] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. A. Brandhuber and K. Sfetsos, Nonstandard compactifications with mass gaps and Newtons law, JHEP 10 (1999) 013 [hep-th/9908116] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. L.-Y. Hung, R.C. Myers and M. Smolkin, Some calculable contributions to holographic entanglement entropy, JHEP 08 (2011) 039 [arXiv:1105.6055] [INSPIRE].

    Article  ADS  Google Scholar 

  55. C.R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT correspondence, Nucl. Phys. B 546 (1999) 52 [hep-th/9901021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. A. Schwimmer and S. Theisen, Entanglement entropy, trace anomalies and holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. R. Corrado, K. Pilch and N.P. Warner, An N = 2 supersymmetric membrane flow, Nucl. Phys. B 629 (2002) 74 [hep-th/0107220] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  59. A. Pakman and A. Parnachev, Topological entanglement entropy and holography, JHEP 07 (2008) 097 [arXiv:0805.1891] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. A. Khavaev, K. Pilch and N.P. Warner, New vacua of gauged N = 8 supergravity in five-dimensions, Phys. Lett. B 487 (2000) 14 [hep-th/9812035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions, JHEP 03 (2009) 048 [arXiv:0812.1773] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. B. Swingle, Mutual information and the structure of entanglement in quantum field theory, arXiv:1010.4038 [INSPIRE].

  63. M. Fujita, Holographic Entanglement Entropy for D = 4 N = 2 SCFTs in F-theory, Prog. Theor. Phys. 128 (2012) 285 [arXiv:1112.5535] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  64. N. Ogawa and T. Takayanagi, Higher derivative corrections to holographic entanglement entropy for AdS solitons, JHEP 10 (2011) 147 [arXiv:1107.4363] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. T. Hirata and T. Takayanagi, AdS/CFT and strong subadditivity of entanglement entropy, JHEP 02 (2007) 042 [hep-th/0608213] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. T. Nishioka and T. Takayanagi, Ads bubbles, entropy and closed string tachyons, JHEP 01 (2007) 090 [hep-th/0611035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. I. Bah, A. Faraggi, L.A. Pando Zayas and C.A. Terrero-Escalante, Holographic entanglement entropy and phase transitions at finite temperature, Int. J. Mod. Phys. A 24 (2009) 2703 [arXiv:0710.5483] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Google Scholar 

  70. J. Dowker, Entanglement entropy for odd spheres, arXiv:1012.1548 [INSPIRE].

  71. R. Lohmayer, H. Neuberger, A. Schwimmer and S. Theisen, Numerical determination of entanglement entropy for a sphere, Phys. Lett. B 685 (2010) 222 [arXiv:0911.4283] [INSPIRE].

    Article  ADS  Google Scholar 

  72. R.C. Myers and A. Singh, Comments on Holographic Entanglement Entropy and RG Flows, JHEP 04 (2012) 122 [arXiv:1202.2068] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].

    ADS  Google Scholar 

  74. I.R. Klebanov, T. Nishioka, S.S. Pufu and B.R. Safdi, Is renormalized entanglement entropy stationary at RG fixed points?, JHEP 10 (2012) 058 [arXiv:1207.3360] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márk Mezei.

Additional information

ArXiv ePrint: 1202.2070

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Mezei, M. A refinement of entanglement entropy and the number of degrees of freedom. J. High Energ. Phys. 2013, 162 (2013). https://doi.org/10.1007/JHEP04(2013)162

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)162

Keywords

Navigation