Skip to main content
Log in

Striped instability of a holographic Fermi-like liquid

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider a holographic description of a system of strongly-coupled fermions in 2 + 1 dimensions based on a D7-brane probe in the background of D3-branes. The black hole embedding represents a Fermi-like liquid. We study the excitations of the Fermi liquid system. Above a critical density which depends on the temperature, the system becomes unstable towards an inhomogeneous modulated phase which is similar to a charge density and spin wave state. The essence of this instability can be effectively described by a Maxwell-axion theory with a background electric field. We also consider the fate of zero sound at non-zero temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [SPIRES].

    ADS  Google Scholar 

  3. M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. E. D’Hoker and P. Kraus, Holographic metamagnetism, quantum criticality and crossover behavior, JHEP 05 (2010) 083 [arXiv:1003.1302] [SPIRES].

    Article  MathSciNet  Google Scholar 

  5. G. Lifschytz and M. Lippert, Holographic magnetic phase transition, Phys. Rev. D 80 (2009) 066007 [arXiv:0906.3892] [SPIRES].

    ADS  Google Scholar 

  6. E. Keski-Vakkuri and P. Kraus, Quantum Hall effect in AdS/CFT, JHEP 09 (2008) 130 [arXiv:0805.4643] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. J.L. Davis, P. Kraus and A. Shah, Gravity dual of a quantum Hall plateau transition, JHEP 11 (2008) 020 [arXiv:0809.1876] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional quantum hall effect via holography: Chern-Simons, edge states and hierarchy, JHEP 06 (2009) 066 [arXiv:0901.0924] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. Y. Hikida, W. Li and T. Takayanagi, ABJM with flavors and FQHE, JHEP 07 (2009) 065 [arXiv:0903.2194] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. J. Alanen, E. Keski-Vakkuri, P. Kraus and V. Suur-Uski, AC transport at holographic quantum Hall transitions, JHEP 11 (2009) 014 [arXiv:0905.4538] [SPIRES].

    Article  ADS  Google Scholar 

  11. O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall effect in a holographic model, JHEP 10 (2010) 063 [arXiv:1003.4965] [SPIRES].

    Article  ADS  Google Scholar 

  12. N. Jokela, G. Lifschytz and M. Lippert, Magneto-roton excitation in a holographic quantum Hall fluid, JHEP 02 (2011) 104 [arXiv:1012.1230] [SPIRES].

    Article  ADS  Google Scholar 

  13. N. Jokela, M.Järvinen and M. Lippert, A holographic quantum Hall model at integer filling, JHEP 05 (2011) 101 [arXiv:1101.3329] [SPIRES].

    Article  ADS  Google Scholar 

  14. S.-J. Rey, String theory on thin semiconductors: holographic realization of Fermi points and surfaces, Prog. Theor. Phys. Suppl. 177 (2009) 128 [arXiv:0911.5295] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  15. G. Gruner, The dynamics of spin-density waves, Rev. Mod. Phys. 66 (1994) 1 [SPIRES].

    Article  ADS  Google Scholar 

  16. G. Gruner, The dynamics of charge-density waves, Rev. Mod. Phys. 60 (1988) 1129 [SPIRES].

    Article  ADS  Google Scholar 

  17. S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [SPIRES].

    ADS  Google Scholar 

  18. H. Ooguri and C.-S. Park, Spatially modulated phase in holographic quark-gluon plasma, Phys. Rev. Lett. 106 (2011) 061601 [arXiv:1011.4144] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. H. Ooguri and C.-S. Park, Holographic end-point of spatially modulated phase transition, Phys. Rev. D 82 (2010) 126001 [arXiv:1007.3737] [SPIRES].

    ADS  Google Scholar 

  20. C.A.B. Bayona, K. Peeters and M. Zamaklar, A non-homogeneous ground state of the low-temperature Sakai-Sugimoto model, JHEP 06 (2011) 092 [arXiv:1104.2291] [SPIRES].

    Article  ADS  Google Scholar 

  21. A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [SPIRES].

    Article  ADS  Google Scholar 

  22. A. Karch, M. Kulaxizi and A. Parnachev, Notes on properties of holographic matter, JHEP 11 (2009) 017 [arXiv:0908.3493] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Karch, D.T. Son and A.O. Starinets, Zero sound from holography, arXiv:0806.3796 [SPIRES].

  24. I. Amado, M. Kaminski and K. Landsteiner, Hydrodynamics of holographic superconductors, JHEP 05 (2009) 021 [arXiv:0903.2209] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Kaminski, K. Landsteiner, J. Mas, J.P. Shock and J. Tarrio, Holographic operator mixing and quasinormal modes on the brane, JHEP 02 (2010) 021 [arXiv:0911.3610] [SPIRES].

    Article  ADS  Google Scholar 

  26. M. Kulaxizi and A. Parnachev, Comments on Fermi liquid from holography, Phys. Rev. D 78 (2008) 086004 [arXiv:0808.3953] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niko Jokela.

Additional information

ArXiv ePrint: 1106.3883

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergman, O., Jokela, N., Lifschytz, G. et al. Striped instability of a holographic Fermi-like liquid. J. High Energ. Phys. 2011, 34 (2011). https://doi.org/10.1007/JHEP10(2011)034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)034

Keywords

Navigation