Skip to main content
Log in

Holographic c-theorems in arbitrary dimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flows is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT’s. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy’s proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. M.J. Duff, Observations on conformal anomalies, Nucl. Phys. B 125 (1977) 334 [SPIRES].

    Article  ADS  Google Scholar 

  3. M.J. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav. 11 (1994) 1387 [hep-th/9308075] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. L. Bonora, P. Pasti and M. Bregola, Weyl cocycles, Class. Quant. Grav. 3 (1986) 635 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. A. Cappelli, J.I. Latorre and X. Vilasis-Cardona, Renormalization group patterns and c-theorem in more than two dimensions, Nucl. Phys. B 376 (1992) 510 [hep-th/9109041] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Cappelli, D. Friedan and J.I. Latorre, C-theorem and spectral representation, Nucl. Phys. B 352 (1991) 616 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. D. Anselmi, J. Erlich, D.Z. Freedman and A.A. Johansen, Positivity constraints on anomalies in supersymmetric gauge theories, Phys. Rev. D 57 (1998) 7570 [hep-th/9711035] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. J.L. Cardy, Is there a c-theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. H. Osborn, Derivation of a four-dimensional c-theorem, Phys. Lett. B 222 (1989) 97 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. K.A. Intriligator and B. Wecht, The exact superconformal R-symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. E. Barnes, K.A. Intriligator, B. Wecht and J. Wright, Evidence for the strongest version of the 4d a-theorem, via a-maximization along RG flows, Nucl. Phys. B 702 (2004) 131 [hep-th/0408156] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. A.D. Shapere and Y. Tachikawa, A counterexample to the ‘a-theorem’, JHEP 12 (2008) 020 [arXiv:0809.3238] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. D. Gaiotto, N. Seiberg and Y. Tachikawa, Comments on scaling limits of 4d N = 2 theories, arXiv:1011.4568 [SPIRES].

  15. D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  16. L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, The supergravity dual of N = 1 super Yang-Mills theory, Nucl. Phys. B 569 (2000) 451 [hep-th/9909047] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [SPIRES].

    ADS  Google Scholar 

  19. R.C. Myers and B. Robinson, Black holes in quasi-topological gravity, JHEP 08 (2010) 067 [arXiv:1003.5357] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  20. R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, JHEP 08 (2010) 035 [arXiv:1004.2055] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge U.K. (1973) [SPIRES].

    Book  MATH  Google Scholar 

  24. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. M. Blau, K.S. Narain and E. Gava, On subleading contributions to the AdS/CFT trace anomaly, JHEP 09 (1999) 018 [hep-th/9904179] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. D. Lovelock, Divergence-free tensorial concomitants, Aequationes Math. 4 (1970) 127.

    Article  MATH  MathSciNet  Google Scholar 

  30. J. Oliva and S. Ray, A new cubic theory of gravity in five dimensions: black hole, Birkhoff’s theorem and c-function, Class. Quant. Grav. 27 (2010) 225002 [arXiv:1003.4773] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Oliva and S. Ray, Classification of six derivative Lagrangians of gravity and static spherically symmetric solutions, Phys. Rev. D 82 (2010) 124030 [arXiv:1004.0737] [SPIRES].

    ADS  Google Scholar 

  32. H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. J. Erdmenger and H. Osborn, Conserved currents and the energy-momentum tensor in conformally invariant theories for general dimensions, Nucl. Phys. B 483 (1997) 431 [hep-th/9605009] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].

    ADS  Google Scholar 

  35. A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7 /CFT 6 , Gauss-Bonnet gravity and viscosity bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [SPIRES].

    Article  Google Scholar 

  37. X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [SPIRES].

    Article  ADS  Google Scholar 

  38. J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Lovelock gravities and black holes, JHEP 06 (2010) 008 [arXiv:0912.1877] [SPIRES].

    Article  Google Scholar 

  39. D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. X.O. Camanho and J.D. Edelstein, Causality in AdS/CFT and Lovelock theory, JHEP 06 (2010) 099 [arXiv:0912.1944] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [SPIRES].

    Article  ADS  Google Scholar 

  42. X.O. Camanho, J.D. Edelstein and M.F. Paulos, Lovelock theories, holography and the fate of the viscosity bound, arXiv:1010.1682 [SPIRES].

  43. R.V. Buniy, S.D.H. Hsu and B.M. Murray, The null energy condition and instability, Phys. Rev. D 74 (2006) 063518 [hep-th/0606091] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and superluminal propagation, JHEP 03 (2006) 025 [hep-th/0512260] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. A. Schwimmer and S. Theisen, Entanglement entropy, trace anomalies and holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. A. Sinha, On higher derivative gravity, c-theorems and cosmology, arXiv:1008.4315 [SPIRES].

  48. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  49. A. Sinha, On the new massive gravity and AdS/CFT, JHEP 06 (2010) 061 [arXiv:1003.0683] [SPIRES].

    Article  ADS  Google Scholar 

  50. M.F. Paulos, New massive gravity extended with an arbitrary number of curvature corrections, Phys. Rev. D 82 (2010) 084042 [arXiv:1005.1646] [SPIRES].

    ADS  Google Scholar 

  51. I. Gullu, T.C. Sisman and B. Tekin, c-functions in the Born-Infeld extended new massive gravity, Phys. Rev. D 82 (2010) 024032 [arXiv:1005.3214] [SPIRES].

    ADS  Google Scholar 

  52. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  53. V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  54. T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  55. T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions, Phys. Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. R. Emparan, AdS/CFT duals of topological black holes and the entropy of zero-energy states, JHEP 06 (1999) 036 [hep-th/9906040] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [SPIRES].

  58. M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  59. T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [SPIRES].

    MathSciNet  Google Scholar 

  60. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, in preparation.

  61. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [SPIRES].

  62. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory: a non-technical introduction, Int. J. Quant. Inf. 4 (2006) 429 [quant-ph/0505193] [SPIRES].

    Article  MATH  Google Scholar 

  63. C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  64. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  65. L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, in preparation.

  66. D.V. Fursaev and S.N. Solodukhin, On the description of the Riemannian geometry in the presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  67. D.V. Fursaev and S.N. Solodukhin, On one loop renormalization of black hole entropy, Phys. Lett. B 365 (1996) 51 [hep-th/9412020] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  68. S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  69. M. Bañados, C. Teitelboim and J. Zanelli, Black hole entropy and the dimensional continuation of the Gauss-Bonnet theorem, Phys. Rev. Lett. 72 (1994) 957 [gr-qc/9309026] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  70. S. Carlip and C. Teitelboim, The off-shell black hole, Class. Quant. Grav. 12 (1995) 1699 [gr-qc/9312002] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  71. L. Susskind and J. Uglum, Black hole entropy in canonical quantum gravity and superstring theory, Phys. Rev. D 50 (1994) 2700 [hep-th/9401070] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  72. W. Nelson, A comment on black hole entropy in string theory, Phys. Rev. D 50 (1994) 7400 [hep-th/9406011] [SPIRES].

    ADS  Google Scholar 

  73. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  74. J.L. Cardy and I. Peschel, Finite size dependence of the free energy in two-dimensional critical systems, Nucl. Phys. B 300 (1988) 377 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  75. C. Fefferman and C.R. Graham, Conformal invariants, in Élie Cartan et les Mathématiques d’aujourd’hui, Astérisque (1985) 95.

  76. C. Fefferman and C.R. Graham, The ambient metric, arXiv:0710.0919.

  77. L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114 [SPIRES].

  78. L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  79. C.R. Stephens, G. ’t Hooft and B.F. Whiting, Black hole evaporation without information loss, Class. Quant. Grav. 11 (1994) 621 [gr-qc/9310006] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  80. R. Bousso, The holographic principle, Rev. Mod. Phys. 74 (2002) 825 [hep-th/0203101] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  81. A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  82. V.K. Dobrev, E.K. Khristova, V.B. Petkova and D.B. Stamenov, Conformal covariant operator product expansion of two spin 1/2 fields, Bulg. J. Phys. 1 (1974) 42 [SPIRES].

    Google Scholar 

  83. V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, Harmonic analysis on the N-dimensional Lorentz group and its application to conformal quantum field theory, Lect. Notes Phys. 63 (1977) 1 [SPIRES].

    Article  ADS  Google Scholar 

  84. I.T. Todorov, M.C. Mintchev and V.B. Petkova, Conformal invariance in quantum field theory [SPIRES].

  85. A.H. Castro Neto and E.H. Fradkin, The thermodynamics of quantum systems and generalizations of Zamolodchikov’s c-theorem, Nucl. Phys. B 400 (1993) 525 [cond-mat /9301009] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  86. T. Appelquist, A.G. Cohen and M. Schmaltz, A new constraint on strongly coupled field theories, Phys. Rev. D 60 (1999) 045003 [hep-th/9901109] [SPIRES].

    ADS  Google Scholar 

  87. T. Appelquist, A.G. Cohen, M. Schmaltz and R. Shrock, New constraints on chiral gauge theories, Phys. Lett. B 459 (1999) 235 [hep-th/9904172] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  88. S. Sachdev, Polylogarithm identities in a conformal field theory in three-dimensions, Phys. Lett. B 309 (1993) 285 [hep-th/9305131] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  89. P. Kovtun and A. Ritz, Black holes and universality classes of critical points, Phys. Rev. Lett. 100 (2008) 171606 [arXiv:0801.2785] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  90. P. Kovtun and A. Ritz, Universal conductivity and central charges, Phys. Rev. D 78 (2008) 066009 [arXiv:0806.0110] [SPIRES].

    ADS  Google Scholar 

  91. F. Bastianelli, S. Frolov and A.A. Tseytlin, Conformal anomaly of (2,0) tensor multiplet in six dimensions and AdS/CFT correspondence, JHEP 02 (2000) 013 [hep-th/0001041] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  92. H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  93. H. Casini and M. Huerta, A c-theorem for the entanglement entropy, J. Phys. A 40 (2007) 7031 [cond-mat/0610375] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  94. H. Casini and M. Huerta, Entanglement entropy for the n-sphere, Phys. Lett. B 694 (2010) 167 [arXiv:1007.1813] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  95. J.S. Dowker, Hyperspherical entanglement entropy, J. Phys. A 43 (2010) 445402 [arXiv:1007.3865] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  96. J.S. Dowker, Entanglement entropy for even spheres, arXiv:1009.3854 [SPIRES].

  97. A. Cappelli and G. D’Appollonio, On the trace anomaly as a measure of degrees of freedom, Phys. Lett. B 487 (2000) 87 [hep-th/0005115] [SPIRES].

    ADS  Google Scholar 

  98. D.N. Kabat, Black hole entropy and entropy of entanglement, Nucl. Phys. B 453 (1995) 281 [hep-th/9503016] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  99. F. Larsen and F. Wilczek, Renormalization of black hole entropy and of the gravitational coupling constant, Nucl. Phys. B 458 (1996) 249 [hep-th/9506066] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  100. D.V. Fursaev and G. Miele, Cones, spins and heat kernels, Nucl. Phys. B 484 (1997) 697 [hep-th/9605153] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  101. D. Iellici and V. Moretti, Thermal partition function of photons and gravitons in a Rindler wedge, Phys. Rev. D 54 (1996) 7459 [hep-th/9607015] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  102. L. De Nardo, D.V. Fursaev and G. Miele, Heat-kernel coefficients and spectra of the vector Laplacians on spherical domains with conical singularities, Class. Quant. Grav. 14 (1997) 1059 [hep-th/9610011] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  103. V. Moretti and D. Iellici, Optical approach for the thermal partition function of photons, Phys. Rev. D 55 (1997) 3552 [hep-th/9610180] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  104. A. Allais, Double-trace deformations, holography and the c-conjecture, JHEP 11 (2010) 040 [arXiv:1007.2047] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  105. S.S. Gubser and I. Mitra, Double-trace operators and one-loop vacuum energy in AdS/CFT, Phys. Rev. D 67 (2003) 064018 [hep-th/0210093] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  106. S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of double-trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  107. J.I. Latorre, C.A. Lütken, E. Rico and G. Vidal, Fine-grained entanglement loss along renormalization group flows, Phys. Rev. A 71 (2005) 034301 [quant-ph/0404120] [SPIRES].

    ADS  Google Scholar 

  108. G. Vidal, Entanglement renormalization, Phys. Rev. Lett. 99 (2007) 220405 [cond-mat/0512165].

    Article  ADS  Google Scholar 

  109. G. Evenbly and G. Vidal, Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms, New J. Phys. 12 (2010) 025007 [arXiv:0801.2449].

    Article  MathSciNet  ADS  Google Scholar 

  110. G. Evenbly and G. Vidal, Entanglement renormalization in noninteracting fermionic systems, Phys. Rev. B 81 (2010) 235102 [arXiv:0710.0692].

    ADS  Google Scholar 

  111. M.A. Metlitski, C.A. Fuertes and S. Sachdev, Entanglement entropy in the O(N) model, Phys. Rev. B 80 (2009) 115122 [arXiv:0904.4477].

    ADS  Google Scholar 

  112. B. Hsu, M. Mulligan, E. Fradkin and E.-A. Kim, Universal entanglement entropy in two-dimensional conformal quantum critical points, Phys. Rev. B 79 (2009) 115421 [arXiv:0812.0203] [SPIRES].

    ADS  Google Scholar 

  113. M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613] [SPIRES].

    Article  ADS  Google Scholar 

  114. A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  115. H. Casini, Mutual information challenges entropy bounds, Class. Quant. Grav. 24 (2007) 1293 [gr-qc/0609126] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  116. H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions, JHEP 03 (2009) 048 [arXiv:0812.1773] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  117. H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [SPIRES].

    MathSciNet  Google Scholar 

  118. B. Swingle, Mutual information and the structure of entanglement in quantum field theory, arXiv:1010.4038 [SPIRES].

  119. M. Headrick, Entanglement Renyi entropies in holographic theories, arXiv:1006.0047 [SPIRES].

  120. D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  121. J. de Boer, M. Kulaxizi and A. Parnachev, in preparation.

  122. R.C. Myers, S. Sachdev and A. Singh, Holographic quantum critical transport without self-duality, arXiv:1010.0443 [SPIRES].

  123. M.F. Paulos, Holographic phase space: c-functions and black holes as renormalization group flows, in preparation.

  124. A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [SPIRES].

    Article  ADS  Google Scholar 

  125. R.C. Myers, M.F. Paulos and A. Sinha, Holographic hydrodynamics with a chemical potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  126. A. De Felice and S. Tsujikawa, f(R) theories, Living Rev. Rel. 13 (2010) 3 [arXiv:1002.4928] [SPIRES].

    Google Scholar 

  127. K.S. Stelle, Classical gravity with higher derivatives, Gen. Rel. Grav. 9 (1978) 353 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  128. M. Nakasone and I. Oda, Massive gravity with mass term in three dimensions, Phys. Rev. D 79 (2009) 104012 [arXiv:0903.1459] [SPIRES].

    ADS  Google Scholar 

  129. D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  130. K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  131. S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  132. A. Adams, A. Maloney, A. Sinha and S.E. Vazquez, 1/N effects in non-relativistic gauge-gravity duality, JHEP 03 (2009) 097 [arXiv:0812.0166] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  133. D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [SPIRES].

    Article  ADS  Google Scholar 

  134. C. Charmousis, R. Emparan, E. Kiritsis and R.C. Myers, in preparation.

  135. C. Hoyos and P. Koroteev, On the null energy condition and causality in Lifshitz holography, Phys. Rev. D 82 (2010) 084002 [arXiv:1007.1428] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Myers.

Additional information

ArXiv ePrint: 1011.5819

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers, R.C., Sinha, A. Holographic c-theorems in arbitrary dimensions. J. High Energ. Phys. 2011, 125 (2011). https://doi.org/10.1007/JHEP01(2011)125

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2011)125

Keywords

Navigation