Skip to main content
Log in

Quantum Hall effect in a holographic model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider a holographic description of a system of strongly coupled fermions in 2 + 1 dimensions based on a D7-brane probe in the background of D3-branes, and construct stable embeddings by turning on worldvolume fluxes. We study the system at finite temperature and charge density, and in the presence of a background magnetic field. We show that Minkowski-like embeddings that terminate above the horizon describe a family of quantum Hall states with filling fractions that are parameterized by a single discrete parameter. The quantization of the Hall conductivity is a direct consequence of the topological quantization of the fluxes. When the magnetic field is varied relative to the charge density away from these discrete filling fractions, the embeddings deform continuously into black-hole-like embeddings that enter the horizon and that describe metallic states. We also study the thermodynamics of this system and show that there is a first order phase transition at a critical temperature from the quantum Hall state to the metallic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50 (1983) 1395 [SPIRES].

    Article  ADS  Google Scholar 

  2. V.J. Goldman and B. Su, Resonant Tunneling in the Quantum Hall Regime: Measurement of Fractional Charge, Science 267 (1995) 1010.

    Article  ADS  Google Scholar 

  3. R. dePicciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin and D. Mahalu, Direct observation of a fractional charge, Nature 389 (1997) 162.

    Article  ADS  Google Scholar 

  4. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  5. T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  6. S.J. Rey, Quantum phase transition from string theory, talk at Strings 2007, Madrid Spain, 25 – 29 June 2007.

  7. S.-J. Rey, String theory on thin semiconductors: Holographic realization of Fermi points and surfaces, Prog. Theor. Phys. Suppl. 177 (2009) 128 [arXiv:0911.5295] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  8. J.L. Davis, P. Kraus and A. Shah, Gravity Dual of a Quantum Hall Plateau Transition, JHEP 11 (2008) 020 [arXiv:0809.1876] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Alanen, E. Keski-Vakkuri, P. Kraus and V. Suur-Uski, AC Transport at Holographic Quantum Hall Transitions, JHEP 11 (2009) 014 [arXiv:0905.4538] [SPIRES].

    Article  ADS  Google Scholar 

  10. D.K. Hong and H.-U. Yee, Holographic aspects of three dimensional QCD from string theory, JHEP 05 (2010) 036 [arXiv:1003.1306] [SPIRES].

    Article  Google Scholar 

  11. R.C. Myers and M.C. Wapler, Transport Properties of Holographic Defects, JHEP 12 (2008) 115 [arXiv:0811.0480] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. D.J. Thouless, Topological interpretations of quantum Hall conductance, J. Math. Phys. 35 (1994) 5362.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. E. Keski-Vakkuri and P. Kraus, Quantum Hall Effect in AdS/CFT, JHEP 09 (2008) 130 [arXiv:0805.4643] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional Quantum Hall Effect via Holography: Chern-Simons, Edge States and Hierarchy, JHEP 06 (2009) 066 [arXiv:0901.0924] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. Y. Hikida, W. Li and T. Takayanagi, ABJM with Flavors and FQHE, JHEP 07 (2009) 065 [arXiv:0903.2194] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. J.H. Brodie, L. Susskind and N. Toumbas, How Bob Laughlin tamed the giant graviton from Taub-NUT space, JHEP 02 (2001) 003 [hep-th/0010105] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. O. Bergman, Y. Okawa and J.H. Brodie, The stringy quantum Hall fluid, JHEP 11 (2001) 019 [hep-th/0107178] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. S. Hellerman and L. Susskind, Realizing the quantum Hall system in string theory, hep-th/0107200 [SPIRES].

  19. N. Jokela, G. Lifschytz and M. Lippert, work in progress.

  20. O. Bergman, G. Lifschytz and M. Lippert, Magnetic properties of dense holographic QCD, Phys. Rev. D 79 (2009) 105024 [arXiv:0806.0366] [SPIRES].

    ADS  Google Scholar 

  21. S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. O’Bannon, Hall Conductivity of Flavor Fields from AdS/CFT, Phys. Rev. D 76 (2007) 086007 [arXiv:0708.1994] [SPIRES].

    ADS  Google Scholar 

  24. G. Lifschytz and M. Lippert, Anomalous conductivity in holographic QCD, Phys. Rev. D 80 (2009) 066005 [arXiv:0904.4772] [SPIRES].

    ADS  Google Scholar 

  25. C.G. Callan Jr., A. Guijosa and K.G. Savvidy, Baryons and string creation from the fivebrane worldvolume action, Nucl. Phys. B 547 (1999) 127 [hep-th/9810092] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oren Bergman.

Additional information

ArXiv ePrint: 1003.4965

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergman, O., Jokela, N., Lifschytz, G. et al. Quantum Hall effect in a holographic model. J. High Energ. Phys. 2010, 63 (2010). https://doi.org/10.1007/JHEP10(2010)063

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2010)063

Keywords

Navigation