Skip to main content
Log in

Inflation and dark matter in the Higgs portal of classically scale invariant Standard Model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider a minimal classically scale-invariant extension of the Standard Model. In this theory, the Higgs mechanism is triggered and the electroweak symmetry breaking is generated radiatively by the Coleman-Weinberg sector which is coupled to the SM Higgs. We extend the Higgs portal interactions of the theory to include an additional singlet which is also non-minimally coupled to gravity. This generates a single-field slow-roll inflation mechanism in the effective field theory formulation which is robust up to Planck scales. Our approach does not require integrating in any additional new physics degrees of freedom to unitarise the theory in the sub-Planckian regime where inflation happens. As a result, no large threshold corrections appear in our approach to inflation so that the electroweak scale and the SM Higgs mass are not affected. The singlet field responsible for inflation also gives a viable dark matter candidate in our model. We also discuss the relation between classical scale-invariance of the effective theory and the possible local scale invariance of the full theory and comment on the naturalness of the electroweak scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  4. R. Hempfling, The next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].

    Article  ADS  Google Scholar 

  5. K.A. Meissner and H. Nicolai, Conformal symmetry and the Standard Model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. W.A. Bardeen, On naturalness in the Standard Model, presented at 1995 Ontake summer institute, FERMILAB-CONF-95-391, Ontake Mountain Japan August 27-September 2 1995.

  7. C. Englert, J. Jaeckel, V. Khoze and M. Spannowsky, Emergence of the electroweak scale through the Higgs portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].

    Article  ADS  Google Scholar 

  8. W.-F. Chang, J.N. Ng and J.M. Wu, Shadow Higgs from a scale-invariant hidden U(1) s model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].

    ADS  Google Scholar 

  9. R. Foot, A. Kobakhidze and R.R. Volkas, Electroweak Higgs as a pseudo-Goldstone boson of broken scale invariance, Phys. Lett. B 655 (2007) 156 [arXiv:0704.1165] [INSPIRE].

    Article  ADS  Google Scholar 

  10. R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].

    ADS  Google Scholar 

  11. S. Iso, N. Okada and Y. Orikasa, Classically conformal B-L extended Standard Model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].

    Article  ADS  Google Scholar 

  12. L. Alexander-Nunneley and A. Pilaftsis, The minimal scale invariant extension of the Standard Model, JHEP 09 (2010) 021 [arXiv:1006.5916] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Iso and Y. Orikasa, TeV scale B-L model with a flat Higgs potential at the Planck scalein view of the hierarchy problem, Prog. Theor. Exp. Phys. 2013 (2013) 023B08 [arXiv:1210.2848] [INSPIRE].

    Google Scholar 

  14. E.J. Chun, S. Jung and H.M. Lee, Radiative generation of the Higgs potential, Phys. Lett. B 725 (2013) 158 [arXiv:1304.5815] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical naturalness and dynamical breaking of classical scale invariance, arXiv:1304.7006 [INSPIRE].

  16. T. Hambye and A. Strumia, Dynamical generation of the weak and dark matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].

    ADS  Google Scholar 

  17. V.V. Khoze and G. Ro, Leptogenesis and neutrino oscillations in the classically conformal Standard Model with the Higgs portal, JHEP 10 (2013) 075 [arXiv:1307.3764] [INSPIRE].

    Article  ADS  Google Scholar 

  18. C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].

    ADS  Google Scholar 

  19. R.N. Mohapatra and R. Marshak, Local B-L symmetry of electroweak interactions, Majorana neutrinos and neutron oscillations, Phys. Rev. Lett. 44 (1980) 1316 [Erratum ibid. 44 (1980) 1643] [INSPIRE].

  20. R. Marshak and R.N. Mohapatra, Quark-lepton symmetry and B-L as the U(1) generator of the electroweak symmetry group, Phys. Lett. B 91 (1980) 222 [INSPIRE].

    Article  ADS  Google Scholar 

  21. C. Wetterich, Neutrino masses and the scale of B-L violation, Nucl. Phys. B 187 (1981) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  23. E.K. Akhmedov, V. Rubakov and A.Y. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].

    Article  ADS  Google Scholar 

  24. T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Drewes and B. Garbrecht, Leptogenesis from a GeV seesaw without mass degeneracy, JHEP 03 (2013) 096 [arXiv:1206.5537] [INSPIRE].

    Article  ADS  Google Scholar 

  26. G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  27. D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, arXiv:1307.3536 [INSPIRE].

  28. O. Lebedev, On stability of the electroweak vacuum and the Higgs portal, Eur. Phys. J. C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

    ADS  Google Scholar 

  31. A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].

    Article  ADS  Google Scholar 

  33. A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. Planck collaboration, P. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [INSPIRE].

  35. D. Salopek, J. Bond and J.M. Bardeen, Designing density fluctuation spectra in inflation, Phys. Rev. D 40 (1989) 1753 [INSPIRE].

    ADS  Google Scholar 

  36. F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].

    Article  ADS  Google Scholar 

  37. J. Barbon and J. Espinosa, On the naturalness of Higgs inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [INSPIRE].

    ADS  Google Scholar 

  38. C. Burgess, H.M. Lee and M. Trott, Power-counting and the validity of the classical approximation during inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [INSPIRE].

    Article  ADS  Google Scholar 

  39. R.N. Lerner and J. McDonald, Higgs inflation and naturalness, JCAP 04 (2010) 015 [arXiv:0912.5463] [INSPIRE].

    Article  ADS  Google Scholar 

  40. C. Burgess, H.M. Lee and M. Trott, Comment on Higgs inflation and naturalness, JHEP 07 (2010) 007 [arXiv:1002.2730] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M.P. Hertzberg, On inflation with non-minimal coupling, JHEP 11 (2010) 023 [arXiv:1002.2995] [INSPIRE].

    Article  ADS  Google Scholar 

  42. F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations, JHEP 01 (2011) 016 [arXiv:1008.5157] [INSPIRE].

    Article  ADS  Google Scholar 

  43. G.F. Giudice and H.M. Lee, Unitarizing Higgs inflation, Phys. Lett. B 694 (2011) 294 [arXiv:1010.1417] [INSPIRE].

    Article  ADS  Google Scholar 

  44. O. Lebedev and H.M. Lee, Higgs portal inflation, Eur. Phys. J. C 71 (2011) 1821 [arXiv:1105.2284] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Shaposhnikov and I. Tkachev, The νMSM, inflation and dark matter, Phys. Lett. B 639 (2006) 414 [hep-ph/0604236] [INSPIRE].

    Article  ADS  Google Scholar 

  46. T. Clark, B. Liu, S. Love and T. ter Veldhuis, The Standard Model Higgs boson-inflaton and dark matter, Phys. Rev. D 80 (2009) 075019 [arXiv:0906.5595] [INSPIRE].

    ADS  Google Scholar 

  47. R.N. Lerner and J. McDonald, Gauge singlet scalar as inflaton and thermal relic dark matter, Phys. Rev. D 80 (2009) 123507 [arXiv:0909.0520] [INSPIRE].

    ADS  Google Scholar 

  48. F. Bezrukov and D. Gorbunov, Light inflaton hunters guide, JHEP 05 (2010) 010 [arXiv:0912.0390] [INSPIRE].

    Article  ADS  Google Scholar 

  49. R.N. Lerner and J. McDonald, Distinguishing Higgs inflation and its variants, Phys. Rev. D 83 (2011) 123522 [arXiv:1104.2468] [INSPIRE].

    ADS  Google Scholar 

  50. F. Bezrukov, The Higgs field as an inflaton, Class. Quant. Grav. 30 (2013) 214001 [arXiv:1307.0708] [INSPIRE].

    Article  ADS  Google Scholar 

  51. V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

  53. C. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].

    Article  ADS  Google Scholar 

  54. Y. Mambrini, Higgs searches and singlet scalar dark matter: combined constraints from XENON 100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].

    ADS  Google Scholar 

  55. C. Englert, T. Plehn, M. Rauch, D. Zerwas and P.M. Zerwas, LHC: standard Higgs and hidden Higgs, Phys. Lett. B 707 (2012) 512 [arXiv:1112.3007] [INSPIRE].

    Article  ADS  Google Scholar 

  56. A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].

    Article  ADS  Google Scholar 

  57. I. Low, P. Schwaller, G. Shaughnessy and C.E. Wagner, The dark side of the Higgs boson, Phys. Rev. D 85 (2012) 015009 [arXiv:1110.4405] [INSPIRE].

    ADS  Google Scholar 

  58. K. Cheung, Y.-L.S. Tsai, P.-Y. Tseng, T.-C. Yuan and A. Zee, Global study of the simplest scalar phantom dark matter model, JCAP 10 (2012) 042 [arXiv:1207.4930] [INSPIRE].

    Article  ADS  Google Scholar 

  59. J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [arXiv:1306.4710] [INSPIRE].

    ADS  Google Scholar 

  60. XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    Article  ADS  Google Scholar 

  61. R. Kallosh and A. Linde, Superconformal generalization of the chaotic inflation model \( \frac{\lambda }{4}{\phi^4}-\frac{\xi }{2}{\phi^2}R \), JCAP 06 (2013) 027 [arXiv:1306.3211] [INSPIRE].

    Article  ADS  Google Scholar 

  62. I. Bars, P. Steinhardt and N. Turok, Local conformal symmetry in physics and cosmology, arXiv:1307.1848 [INSPIRE].

  63. F. Englert, C. Truffin and R. Gastmans, Conformal invariance in quantum gravity, Nucl. Phys. B 117 (1976) 407 [INSPIRE].

    Article  ADS  Google Scholar 

  64. M. Shaposhnikov and D. Zenhausern, Quantum scale invariance, cosmological constant and hierarchy problem, Phys. Lett. B 671 (2009) 162 [arXiv:0809.3406] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. J. García-Bellido, J. Rubio, M. Shaposhnikov and D. Zenhausern, Higgs-dilaton cosmology: from the early to the late universe, Phys. Rev. D 84 (2011) 123504 [arXiv:1107.2163] [INSPIRE].

    ADS  Google Scholar 

  66. R. Sundrum, Gravitys scalar cousin, hep-th/0312212 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin V. Khoze.

Additional information

ArXiv ePrint: 1308.6338

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoze, V.V. Inflation and dark matter in the Higgs portal of classically scale invariant Standard Model. J. High Energ. Phys. 2013, 215 (2013). https://doi.org/10.1007/JHEP11(2013)215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)215

Keywords

Navigation