Skip to main content
Log in

Leptogenesis and neutrino oscillations in the classically conformal standard model with the Higgs portal

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The Standard Model with an added Higgs portal interaction and no explicit mass terms is a classically scale-invariant theory. In this case the scale of electroweak symmetry breaking can be induced radiatively by the Coleman-Weinberg mechanism operational in a hidden sector, and then transmitted to the Standard Model through the Higgs portal. The smallness of the generated values for the Higgs vev and mass, compared to the UV cutoff of our classically scale-invariant effective theory, is naturally explained by this mechanism.

We show how these classically conformal models can generate the baryon asymmetry of the Universe without the need of introducing mass scales by hand or their resonant fine-tuning. The minimal model we consider is the Standard Model coupled to the Coleman-Weinberg scalar field charged under the U(1) B−L gauge group. Anomaly cancellation requires automatic inclusion of three generations of right-handed neutrinos. Their GeV-scale Majorana masses are induced by the Coleman-Weinberg field and lead to the generation of active neutrino masses through the standard see-saw mechanism. Leptogenesis occurs via flavour oscillations of right-handed sterile neutrinos and is converted to the baryon asymmetry by electroweak sphalerons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

    Article  ADS  Google Scholar 

  3. P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. G. Guralnik, C. Hagen and T. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    Article  ADS  Google Scholar 

  5. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  6. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  7. S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  8. W.A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391.

  9. K.A. Meissner and H. Nicolai, Conformal Symmetry and the Standard Model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. R. Hempfling, The Next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].

    Article  ADS  Google Scholar 

  11. W.-F. Chang, J.N. Ng and J.M. Wu, Shadow Higgs from a scale-invariant hidden U(1)(s) model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].

    ADS  Google Scholar 

  12. R. Foot, A. Kobakhidze and R.R. Volkas, Electroweak Higgs as a pseudo-Goldstone boson of broken scale invariance, Phys. Lett. B 655 (2007) 156 [arXiv:0704.1165] [INSPIRE].

    Article  ADS  Google Scholar 

  13. R. Foot, A. Kobakhidze and R.R. Volkas, Stable mass hierarchies and dark matter from hidden sectors in the scale-invariant standard model, Phys. Rev. D 82 (2010) 035005 [arXiv:1006.0131] [INSPIRE].

    ADS  Google Scholar 

  14. S. Iso, N. Okada and Y. Orikasa, Classically conformal B L extended Standard Model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S. Iso and Y. Orikasa, TeV Scale B-L model with a flat Higgs potential at the Planck scale -in view of the hierarchy problem -, PTEP 2013 (2013) 023B08 [arXiv:1210.2848] [INSPIRE].

    Google Scholar 

  16. C. Englert, J. Jaeckel, V. Khoze and M. Spannowsky, Emergence of the Electroweak Scale through the Higgs Portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].

    Article  ADS  Google Scholar 

  17. E.J. Chun, S. Jung and H.M. Lee, Radiative generation of the Higgs potential, Phys. Lett. B 725 (2013) 158 [arXiv:1304.5815] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical Naturalness and Dynamical Breaking of Classical Scale Invariance, arXiv:1304.7006 [INSPIRE].

  19. T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].

    ADS  Google Scholar 

  20. T. Binoth and J. van der Bij, Influence of strongly coupled, hidden scalars on Higgs signals, Z. Phys. C 75 (1997) 17 [hep-ph/9608245] [INSPIRE].

    Google Scholar 

  21. R. Schabinger and J.D. Wells, A Minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the large hadron collider, Phys. Rev. D 72 (2005) 093007 [hep-ph/0509209] [INSPIRE].

    ADS  Google Scholar 

  22. B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].

  23. C. Englert, T. Plehn, D. Zerwas and P.M. Zerwas, Exploring the Higgs portal, Phys. Lett. B 703 (2011) 298 [arXiv:1106.3097] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  25. N. Manton, Topology in the Weinberg-Salam Theory, Phys. Rev. D 28 (1983) 2019 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. V. Kuzmin, V. Rubakov and M. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Davidson and A. Ibarra, A Lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].

    Article  ADS  Google Scholar 

  28. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].

    Article  ADS  Google Scholar 

  29. E.K. Akhmedov, V. Rubakov and A.Y. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].

    Article  ADS  Google Scholar 

  30. T. Asaka and M. Shaposhnikov, The nuMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Drewes and B. Garbrecht, Leptogenesis from a GeV Seesaw without Mass Degeneracy, JHEP 03 (2013) 096 [arXiv:1206.5537] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J. Lykken, Higgs without Supersymmetry, Talk at the MITP Workshop, Mainz, Germany, March 18-22 (2013).

  33. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the Electroweak Vacuum by a Scalar Threshold Effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    Article  ADS  Google Scholar 

  34. R.N. Mohapatra and R. Marshak, Local B-L Symmetry of Electroweak Interactions, Majorana Neutrinos and Neutron Oscillations, Phys. Rev. Lett. 44 (1980) 1316 [Erratum ibid. 44 (1980) 1643] [INSPIRE].

  35. R. Marshak and R.N. Mohapatra, Quark - Lepton Symmetry and B-L as the U(1) Generator of the Electroweak Symmetry Group, Phys. Lett. B 91 (1980) 222 [INSPIRE].

    Article  ADS  Google Scholar 

  36. C. Wetterich, Neutrino Masses and the Scale of B-L Violation, Nucl. Phys. B 187 (1981) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Khalil, Low scale B - L extension of the Standard Model at the LHC, J. Phys. G 35 (2008) 055001 [hep-ph/0611205] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  38. S. Khalil and A. Masiero, Radiative B-L symmetry breaking in supersymmetric models, Phys. Lett. B 665 (2008) 374 [arXiv:0710.3525] [INSPIRE].

    Article  ADS  Google Scholar 

  39. L. Basso, A. Belyaev, S. Moretti and C.H. Shepherd-Themistocleous, Phenomenology of the minimal B-L extension of the Standard model: Zand neutrinos, Phys. Rev. D 80 (2009) 055030 [arXiv:0812.4313] [INSPIRE].

    ADS  Google Scholar 

  40. L. Basso, A. Belyaev, S. Moretti, G.M. Pruna and C.H. Shepherd-Themistocleous, Zdiscovery potential at the LHC in the minimal BL extension of the Standard Model, Eur. Phys. J. C 71 (2011) 1613 [arXiv:1002.3586] [INSPIRE].

    Article  ADS  Google Scholar 

  41. L. Basso, S. Moretti and G.M. Pruna, A Renormalisation Group Equation Study of the Scalar Sector of the Minimal B-L Extension of the Standard Model, Phys. Rev. D 82 (2010) 055018 [arXiv:1004.3039] [INSPIRE].

    ADS  Google Scholar 

  42. R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavor issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [INSPIRE].

    Article  ADS  Google Scholar 

  44. E. Nardi, Y. Nir, E. Roulet and J. Racker, The Importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].

    Article  ADS  Google Scholar 

  45. S. Blanchet and P. Di Bari, Flavor effects on leptogenesis predictions, JCAP 03 (2007) 018 [hep-ph/0607330] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Pilaftsis and T.E. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Pilaftsis and T.E. Underwood, Electroweak-scale resonant leptogenesis, Phys. Rev. D 72 (2005) 113001 [hep-ph/0506107] [INSPIRE].

    ADS  Google Scholar 

  48. G. Sigl and G. Raffelt, General kinetic description of relativistic mixed neutrinos, Nucl. Phys. B 406 (1993) 423 [INSPIRE].

    Article  ADS  Google Scholar 

  49. D. Besak and D. Bödeker, Thermal production of ultrarelativistic right-handed neutrinos: Complete leading-order results, JCAP 03 (2012) 029 [arXiv:1202.1288] [INSPIRE].

    Article  ADS  Google Scholar 

  50. J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. L. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [INSPIRE].

    Google Scholar 

  52. B. Garbrecht and M. Herranen, Effective Theory of Resonant Leptogenesis in the Closed-Time-Path Approach, Nucl. Phys. B 861 (2012) 17 [arXiv:1112.5954] [INSPIRE].

    Article  ADS  Google Scholar 

  53. M. Garny, A. Kartavtsev and A. Hohenegger, Leptogenesis from first principles in the resonant regime, Annals Phys. 328 (2013) 26 [arXiv:1112.6428] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  54. J. Casas and A. Ibarra, Oscillating neutrinos and muon¿ e, gamma, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].

    Article  ADS  Google Scholar 

  55. M. Drewes, The Phenomenology of Right Handed Neutrinos, Int. J. Mod. Phys. E 22 (2013) 1330019 [arXiv:1303.6912] [INSPIRE].

    Article  ADS  Google Scholar 

  56. A. Boyarsky, D. Iakubovskyi and O. Ruchayskiy, Next decade of sterile neutrino studies, Phys. Dark Univ. 1 (2012) 136 [arXiv:1306.4954] [INSPIRE].

    Article  Google Scholar 

  57. V.V. Khoze, Inflation and Dark Matter in the Higgs Portal of Classically Scale Invariant Standard Model, arXiv:1308.6338 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin V. Khoze.

Additional information

ArXiv ePrint: 1307.3764

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoze, V.V., Ro, G. Leptogenesis and neutrino oscillations in the classically conformal standard model with the Higgs portal. J. High Energ. Phys. 2013, 75 (2013). https://doi.org/10.1007/JHEP10(2013)075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)075

Keywords

Navigation