Skip to main content
Log in

The minimal scale invariant extension of the Standard Model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We perform a systematic analysis of an extension of the Standard Model that includes a complex singlet scalar field and is scale invariant at the tree level. We call such a model the Minimal Scale Invariant extension of the Standard Model (MSISM). The tree-level scale invariance of the model is explicitly broken by quantum corrections, which can trigger electroweak symmetry breaking and potentially provide a mechanism for solving the gauge hierarchy problem. Even though the scale invariant Standard Model is not a realistic scenario, the addition of a complex singlet scalar field may result in a perturbative and phenomenologically viable theory. We present a complete classification of the flat directions which may occur in the classical scalar potential of the MSISM. After calculating the one-loop effective potential of the MSISM, we investigate a number of representative scenarios and determine their scalar boson mass spectra, as well as their perturbatively allowed parameter space compatible with electroweak precision data. We discuss the phenomenological implications of these scenarios, in particular, whether they realize explicit or spontaneous CP violation, neutrino masses or provide dark matter candidates. In particular, we find a new minimal scale-invariant model of maximal spontaneous CP violation which can stay perturbative up to Planck-mass energy scales, without introducing an unnaturally large hierarchy in the scalar-potential couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L. Glashow, Partial-symmetries of weak interactions, Nucl. Phys. 22 (1961) 579 [SPIRES];

    Article  Google Scholar 

  2. S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264 [SPIRES].

    Article  ADS  Google Scholar 

  3. A. Salam, Elementary particle physics relativistic groups and analyticity, N. Svartholm ed., Eighth Nobel Symposium Stockholm: Almquvist and Wiksell, Stockholm Sweden (1968) pg. 367.

    Google Scholar 

  4. F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [SPIRES].

    Article  ADS  Google Scholar 

  7. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [SPIRES].

    ADS  Google Scholar 

  8. E. Gildener and S. Weinberg, Symmetry breaking and scalar bosons, Phys. Rev. D 13 (1976) 3333 [SPIRES].

    ADS  Google Scholar 

  9. LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].

    ADS  Google Scholar 

  10. R. Hempfling, The next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [SPIRES].

    ADS  Google Scholar 

  11. W.-F. Chang, J.N. Ng and J.M.S. Wu, Shadow higgs from a scale-invariant hidden U(1)’s model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [SPIRES].

    ADS  Google Scholar 

  12. S. Iso, N. Okada and Y. Orikasa, Classically conformal B L extended standard model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [SPIRES].

    ADS  Google Scholar 

  13. R. Foot, A. Kobakhidze and R.R. Volkas, Electroweak higgs as a pseudo-Goldstone boson of broken scale invariance, Phys. Lett. B 655 (2007) 156 [arXiv:0704.1165] [SPIRES].

    ADS  Google Scholar 

  14. K.A. Meissner and H. Nicolai, Conformal symmetry and the standard model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. K.A. Meissner and H. Nicolai, Effective action, conformal anomaly and the issue of quadratic divergences, Phys. Lett. B 660 (2008) 260 [arXiv:0710.2840] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. K.A. Meissner and H. Nicolai, Neutrinos, axions and conformal symmetry, Eur. Phys. J. C 57 (2008) 493 [arXiv:0803.2814] [SPIRES].

    Article  ADS  Google Scholar 

  17. W. A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391-T [SPIRES].

  18. G. ’t Hooft, Renormalization of massless Yang-Mills fields, Nucl. Phys. B 33 (1971) 173 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [SPIRES].

    Article  ADS  Google Scholar 

  20. R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [SPIRES].

    ADS  Google Scholar 

  21. K.A. Meissner and H. Nicolai, Conformal invariance from non-conformal gravity, Phys. Rev. D 80 (2009) 086005 [arXiv:0907.3298] [SPIRES].

    ADS  Google Scholar 

  22. D. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal extension of the standard model scalar sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [SPIRES].

    ADS  Google Scholar 

  23. V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [SPIRES].

    ADS  Google Scholar 

  24. V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex singlet extension of the standard model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [SPIRES].

    ADS  Google Scholar 

  25. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  26. M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting higgs sector, Phys. Rev. Lett. 65 (1990) 964 [SPIRES].

    Article  ADS  Google Scholar 

  27. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].

    ADS  Google Scholar 

  28. G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [SPIRES].

    ADS  Google Scholar 

  29. G. Altarelli, R. Barbieri and S. Jadach, Toward a model independent analysis of electroweak data, Nucl. Phys. B 369 (1992) 3

    Article  ADS  Google Scholar 

  30. G. Altarelli, R. Barbieri and S. Jadach, Toward a model independent analysis of electroweak data, Nucl. Phys. B 369 (1992) 3 [Erratum ibid. B 376 (1992) 444] [SPIRES].

    Article  ADS  Google Scholar 

  31. M.J.G. Veltman, Radiative corrections to vector boson masses, Phys. Lett. B 91 (1980) 95 [SPIRES].

    ADS  Google Scholar 

  32. R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, Neutrino mass in radiatively-broken scale-invariant models, Phys. Rev. D 76 (2007) 075014 [arXiv:0706.1829] [SPIRES].

    ADS  Google Scholar 

  33. P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  34. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, D.Z. Freedman and P. van Nieuwenhuizen eds., North-Holland, Amsterdam (1979).

    Google Scholar 

  35. T. Yanagida, Horizontal symmetry and masses of neutrinos, in proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, O. Sawada and A. Sugamoto eds., Tsukuba, Japan (1979),

  36. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  37. R. Foot, A. Kobakhidze and R.R. Volkas, Stable mass hierarchies and dark matter from hidden sectors in the scale-invariant standard model, Phys. Rev. D 82 (2010) 035005 [arXiv:1006.0131] [SPIRES].

    ADS  Google Scholar 

  38. V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [SPIRES].

    ADS  Google Scholar 

  40. T. Hambye and K. Riesselmann, Matching conditions and Higgs mass upper bounds revisited, Phys. Rev. D 55 (1997) 7255 [hep-ph/9610272] [SPIRES].

    ADS  Google Scholar 

  41. M.A.B. Beg, C. Panagiotakopoulos and A. Sirlin, Mass of the higgs boson in the canonical realization of the Weinberg-Salam theory, Phys. Rev. Lett. 52 (1984) 883 [SPIRES].

    Article  ADS  Google Scholar 

  42. M. Lindner, Implications of triviality for the standard model, Zeit. Phys. C 31 (1986) 295 [SPIRES].

    ADS  Google Scholar 

  43. A. Djouadi, W. Kilian, M. Mühlleitner and P.M. Zerwas, Testing higgs self-couplings at e + e linear colliders, Eur. Phys. J. C 10 (1999) 27 [hep-ph/9903229] [SPIRES].

    ADS  Google Scholar 

  44. D.J. Miller, 2 and S. Moretti, Can the trilinear Higgs self-coupling be measured at future linear colliders?, Eur. Phys. J. C 13 (2000) 459 [hep-ph/9906395] [SPIRES].

    Article  ADS  Google Scholar 

  45. T. Binoth, S. Karg, N. Kauer and R. Ruckl, Multi-Higgs boson production in the standard model and beyond, Phys. Rev. D 74 (2006) 113008 [hep-ph/0608057] [SPIRES].

    ADS  Google Scholar 

  46. A.S. Joshipura and J.W.F. Valle, Invisible higgs decays and neutrino physics, Nucl. Phys. B 397 (1993) 105 [SPIRES].

    Article  ADS  Google Scholar 

  47. F. De Campos et al., Limits on associated production of visibly and invisibly decaying Higgs bosons from Z decays, Phys. Lett. B 336 (1994) 446 [hep-ph/9407328] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. D.G. Cerdeno, A. Dedes and T.E.J. Underwood, The minimal phantom sector of the standard model: Higgs phenomenology and Dirac leptogenesis, JHEP 09 (2006) 067 [hep-ph/0607157] [SPIRES].

    Article  ADS  Google Scholar 

  49. M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [SPIRES].

    Article  ADS  Google Scholar 

  50. D.A. Dicus and V.S. Mathur, Upper bounds on the values of masses in unified gauge theories, Phys. Rev. D 7 (1973) 3111 [SPIRES].

    ADS  Google Scholar 

  51. J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the s matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [SPIRES].

    ADS  Google Scholar 

  52. C.E. Vayonakis, Born helicity amplitudes and cross-sections in nonabelian gauge theories, Nuovo Cim. Lett. 17 (1976) 383 [SPIRES].

    Article  Google Scholar 

  53. B.W. Lee, C. Quigg and H.B. Thacker, Weak interactions at very high-energies: The role of the higgs boson mass, Phys. Rev. D 16 (1977) 1519 [SPIRES].

    ADS  Google Scholar 

  54. D. Wyler and L. Wolfenstein, Massless neutrinos in left-right symmetric models, Nucl. Phys. B 218 (1983) 205 [SPIRES].

    Article  ADS  Google Scholar 

  55. R.N. Mohapatra and J.W.F. Valle, Neutrino mass and Baryon-number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [SPIRES].

    ADS  Google Scholar 

  56. S. Nandi and U. Sarkar, A solution to the neutrino mass problem in superstring E 6 theory, Phys. Rev. Lett. 56 (1986) 564 [SPIRES].

    Article  ADS  Google Scholar 

  57. A. Pilaftsis, Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields, Z. Phys. C 55 (1992) 275 [hep-ph/9901206] [SPIRES].

    ADS  Google Scholar 

  58. A. Pilaftsis, Resonant τ leptogenesis with observable lepton number violation, Phys. Rev. Lett. 95 (2005) 081602 [hep-ph/0408103] [SPIRES].

    Article  ADS  Google Scholar 

  59. J. Kersten and A.Y. Smirnov, Right-handed neutrinos at LHC and the mechanism of neutrino mass generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [SPIRES].

    ADS  Google Scholar 

  60. J. Bernabeu, A. Santamaria, J. Vidal, A. Mendez and J.W.F. Valle, Lepton flavor nonconservation at high-energies in a superstring inspired standard model, Phys. Lett. B 187 (1987) 303 [SPIRES].

    ADS  Google Scholar 

  61. J.G. Korner, A. Pilaftsis and K. Schilcher, Leptonic flavor changing Z0 decays in SU(2) × U(1) theories with right-handed neutrinos, Phys. Lett. B 300 (1993) 381 [hep-ph/9301290] [SPIRES].

    ADS  Google Scholar 

  62. A. Ilakovac and A. Pilaftsis, Flavor violating charged lepton decays in seesaw-type models, Nucl. Phys. B 437 (1995) 491 [hep-ph/9403398] [SPIRES].

    Article  ADS  Google Scholar 

  63. A. Datta, M. Guchait and A. Pilaftsis, Probing lepton number violation via Majorana neutrinos at hadron supercolliders, Phys. Rev. D 50 (1994) 3195 [hep-ph/9311257] [SPIRES].

    ADS  Google Scholar 

  64. F. del Aguila, J.A. Aguilar-Saavedra and R. Pittau, Heavy neutrino signals at large hadron colliders, JHEP 10 (2007) 047 [hep-ph/0703261] [SPIRES].

    Article  Google Scholar 

  65. A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [SPIRES].

    Article  ADS  Google Scholar 

  66. R. Jackiw, Functional evaluation of the effective potential, Phys. Rev. D 9 (1974) 1686 [SPIRES].

    ADS  Google Scholar 

  67. J. Zinn-Justin, Quantum field theory and critical phenomena, Fourth Edition, Oxford University Press, Great Clarendon Street, Oxford, U.K. (2002).

    Book  Google Scholar 

  68. N.K. Nielsen, Gauge invariance and broken conformal symmetry, Nucl. Phys. B 97 (1975) 527 [SPIRES].

    Article  ADS  Google Scholar 

  69. N.K. Nielsen, On the gauge dependence of spontaneous symmetry breaking in gauge theories, Nucl. Phys. B 101 (1975) 173 [SPIRES].

    Article  ADS  Google Scholar 

  70. L.P. Alexander and A. Pilaftsis, The one-loop effective potential in non-linear gauges, J. Phys. G 36 (2009) 045006 [arXiv:0809.1580] [SPIRES].

    ADS  Google Scholar 

  71. B. Garbrecht, Radiative lifting of flat directions of the MSSM in de Sitter background, Nucl. Phys. B 784 (2007) 118 [hep-ph/0612011] [SPIRES].

    Article  ADS  Google Scholar 

  72. D. Binosi, J. Papavassiliou and A. Pilaftsis, Displacement operator formalism for renormalization and gauge dependence to all orders, Phys. Rev. D 71 (2005) 085007 [hep-ph/0501259] [SPIRES].

    ADS  Google Scholar 

  73. G. ’t Hooft, Dimensional regularization and the renormalization group, Nucl. Phys. B 61 (1973) 455 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  74. S. Weinberg, New approach to the renormalization group, Phys. Rev. D 8 (1973) 3497 [SPIRES].

    ADS  Google Scholar 

  75. W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev. D 18 (1978) 3998 [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos Pilaftsis.

Additional information

ArXiv ePrint: 1006.5916

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander-Nunneley, L., Pilaftsis, A. The minimal scale invariant extension of the Standard Model. J. High Energ. Phys. 2010, 21 (2010). https://doi.org/10.1007/JHEP09(2010)021

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)021

Keywords

Navigation