Skip to main content
Log in

Higgs inflation: consistency and generalisations

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We analyse the self-consistency of inflation in the Standard Model, where the Higgs field has a large non-minimal coupling to gravity. We determine the domain of energies in which this model represents a valid effective field theory as a function of the background Higgs field. This domain is bounded above by the cutoff scale which is found to be higher than the relevant dynamical scales throughout the whole history of the Universe, including the inflationary epoch and reheating. We present a systematic scheme to take into account quantum loop corrections to the inflationary calculations within the framework of effective field theory. We discuss the additional assumptions that must be satisfied by the ultra-violet completion of the theory to allow connection between the parameters of the inflationary effective theory and those describing the low-energy physics relevant for the collider experiments. A class of generalisations of inflationary theories with similar properties is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [SPIRES].

    ADS  Google Scholar 

  2. B.L. Spokoiny, Inflation and generation of perturbations in broken symmetric theory of gravity, Phys. Lett. B 147 (1984) 39 [SPIRES].

    ADS  Google Scholar 

  3. T. Futamase and K.-i. Maeda, Chaotic inflationary scenario in models having nonminimal coupling with curvature, Phys. Rev. D 39 (1989) 399 [SPIRES].

    ADS  Google Scholar 

  4. D.S. Salopek, J.R. Bond and J.M. Bardeen, Designing Density Fluctuation Spectra in Inflation, Phys. Rev. D 40 (1989) 1753 [SPIRES].

    ADS  Google Scholar 

  5. R. Fakir and W.G. Unruh, Improvement on cosmological chaotic inflation through nonminimal coupling, Phys. Rev. D 41 (1990) 1783 [SPIRES].

    ADS  Google Scholar 

  6. D.I. Kaiser, Primordial spectral indices from generalized Einstein theories, Phys. Rev. D 52 (1995) 4295 [astro-ph/9408044] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. E. Komatsu and T. Futamase, Complete constraints on a nonminimally coupled chaotic inflationary scenario from the cosmic microwave background, Phys. Rev. D 59 (1999) 064029 [astro-ph/9901127] [SPIRES].

    ADS  Google Scholar 

  8. S. Tsujikawa and B. Gumjudpai, Density perturbations in generalized Einstein scenarios and constraints on nonminimal couplings from the Cosmic Microwave Background, Phys. Rev. D 69 (2004) 123523 [astro-ph/0402185] [SPIRES].

    ADS  Google Scholar 

  9. A.D. Linde, Chaotic Inflation, Phys. Lett. B 129 (1983) 177 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. A.O. Barvinsky, A.Y. Kamenshchik and A.A. Starobinsky, Inflation scenario via the Standard Model Higgs boson and LHC, JCAP 11 (2008) 021 [arXiv:0809.2104] [SPIRES].

    ADS  Google Scholar 

  11. F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the Hot Big Bang, JCAP 06 (2009) 029 [arXiv:0812.3622] [SPIRES].

    ADS  Google Scholar 

  12. J. García-Bellido, D.G. Figueroa and J. Rubio, Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity, Phys. Rev. D 79 (2009) 063531 [arXiv:0812.4624] [SPIRES].

    ADS  Google Scholar 

  13. A. De Simone, M.P. Hertzberg and F. Wilczek, Running Inflation in the Standard Model, Phys. Lett. B 678 (2009) 1 [arXiv:0812.4946] [SPIRES].

    ADS  Google Scholar 

  14. F.L. Bezrukov, A. Magnin and M. Shaposhnikov, Standard Model Higgs boson mass from inflation, Phys. Lett. B 675 (2009) 88 [arXiv:0812.4950] [SPIRES].

    ADS  Google Scholar 

  15. F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [SPIRES].

    Article  ADS  Google Scholar 

  16. A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky and C. Steinwachs, Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP 12 (2009) 003 [arXiv:0904.1698] [SPIRES].

    ADS  Google Scholar 

  17. C.P. Burgess, H.M. Lee and M. Trott, Power-counting and the Validity of the Classical Approximation During Inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [SPIRES].

    Article  ADS  Google Scholar 

  18. J.L.F. Barbon and J.R. Espinosa, On the Naturalness of Higgs Inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [SPIRES].

    ADS  Google Scholar 

  19. C.P. Burgess, H.M. Lee and M. Trott, Comment on Higgs Inflation and Naturalness, JHEP 07 (2010) 007 [arXiv:1002.2730] [SPIRES].

    Article  ADS  Google Scholar 

  20. M.P. Hertzberg, On Inflation with Non-minimal Coupling, JHEP 11 (2010) 023 [arXiv:1002.2995] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  21. R.N. Lerner and J. McDonald, Higgs Inflation and Naturalness, JCAP 04 (2010) 015 [arXiv:0912.5463] [SPIRES].

    ADS  Google Scholar 

  22. K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation with pseudo-Nambu-Goldstone bosons, Phys. Rev. Lett. 65 (1990) 3233 [SPIRES].

    Article  ADS  Google Scholar 

  23. C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field Theory of Inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. S. Weinberg, Effective Field Theory for Inflation, Phys. Rev. D 77 (2008) 123541 [arXiv:0804.4291] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen, Superconformal Symmetry, NMSSM and Inflation, arXiv:1008.2942 [SPIRES].

  26. D. Baumann and D. Green, Desensitizing Inflation from the Planck Scale, JHEP 09 (2010) 057 [arXiv:1004.3801] [SPIRES].

    Article  ADS  Google Scholar 

  27. A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky and C.F. Steinwachs, Higgs boson, renormalization group and naturalness in cosmology, arXiv:0910.1041 [SPIRES].

  28. J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D 10 (1974) 1145 [SPIRES].

    ADS  Google Scholar 

  29. M.B. Voloshin, On strong high-energy scattering in theories with weak coupling, Phys. Rev. D 43 (1991) 1726 [SPIRES].

    ADS  Google Scholar 

  30. R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. M. Shaposhnikov and D. Zenhausern, Scale invariance, unimodular gravity and dark energy, Phys. Lett. B 671 (2009) 187 [arXiv:0809.3395] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. M. Shaposhnikov and D. Zenhausern, Quantum scale invariance, cosmological constant and hierarchy problem, Phys. Lett. B 671 (2009) 162 [arXiv:0809.3406] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314 (1999) 1 [hep-ph/9807278] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. R.N. Lerner and J. McDonald, A Unitarity-Conserving Higgs Inflation Model, Phys. Rev. D 82 (2010) 103525 [arXiv:1005.2978] [SPIRES].

    ADS  Google Scholar 

  35. C. Germani and A. Kehagias, New Model of Inflation with Non-minimal Derivative Coupling of Standard Model Higgs Boson to Gravity, Phys. Rev. Lett. 105 (2010) 011302 [arXiv:1003.2635] [SPIRES].

    Article  ADS  Google Scholar 

  36. C. Germani and A. Kehagias, Cosmological Perturbations in the New Higgs Inflation, JCAP 05 (2010) 019 [arXiv:1003.4285] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bezrukov.

Additional information

ArXiv ePrint: 1008.5157

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezrukov, F., Magnin, A., Shaposhnikov, M. et al. Higgs inflation: consistency and generalisations. J. High Energ. Phys. 2011, 16 (2011). https://doi.org/10.1007/JHEP01(2011)016

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2011)016

Keywords

Navigation