Skip to main content
Log in

Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study phenomenological implications of the ATLAS and CMS hint of a 125 ± 1 GeV Higgs boson for the singlet, and singlet plus doublet non-supersymmetric dark matter models, and for the phenomenology of the CMSSM. We show that in scalar dark matter models the vacuum stability bound on Higgs boson mass is lower than in the standard model and the 125 GeV Higgs boson is consistent with the models being valid up the GUT or Planck scale. We perform a detailed study of the full CMSSM parameter space keeping the Higgs boson mass fixed to 125 ± 1 GeV, and study in detail the freeze-out processes that imply the observed amount of dark matter. After imposing all phenomenological constraints except for the muon (g − 2) μ , we show that the CMSSM parameter space is divided into well separated regions with distinctive but in general heavy sparticle mass spectra. Imposing the (g − 2) μ constraint introduces severe tension between the high SUSY scale and the experimental measurements — only the slepton co-annihilation region survives with potentially testable sparticle masses at the LHC. In the latter case the spin-independent DM-nucleon scattering cross section is predicted to be below detectable limit at the XENON100, but might be of measurable magnitude in the general case of light dark matter with large bino-higgsino mixing and unobservably large scalar masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

  2. G. Guralnik, C. Hagen and T. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    Article  ADS  Google Scholar 

  3. F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. Z.-z. Xing, H. Zhang and S. Zhou, Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays, arXiv:1112.3112 [INSPIRE].

  6. J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    ADS  Google Scholar 

  7. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \(\sqrt {s} = {7}\,TeV\), arXiv:1202.1488 [INSPIRE].

  8. ATLAS collaboration, G. Aad et al., Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \(\sqrt {s} = {7}\,TeV\) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  9. ATLAS collaboration, Combination of Higgs boson searches with up to 4.9 fb −1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC, ATLAS-CONF-2011-163 (2011).

  10. CMS collaboration, Combination of SM Higgs Searches, PAS-HIG-11-032 (2011).

  11. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  12. T. Moroi, R. Sato and T.T. Yanagida, Extra matters decree the relatively heavy Higgs of mass about 125 GeV in the supersymmetric model, Phys. Lett. B 709 (2012) 218 [arXiv:1112.3142] [INSPIRE].

    ADS  Google Scholar 

  13. T. Moroi and K. Nakayama, Wino LSP detection in the light of recent Higgs searches at the LHC, Phys. Lett. B 710 (2012) 159 [arXiv:1112.3123] [INSPIRE].

    ADS  Google Scholar 

  14. P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, arXiv:1112.3068 [INSPIRE].

  15. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    ADS  Google Scholar 

  16. S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].

    ADS  Google Scholar 

  17. T. Li, J.A. Maxin, D.V. Nanopoulos and J.W. Walker, A Higgs mass shift to 125 GeV and a multi-jet supersymmetry signal: miracle of the flippons at the \(\sqrt {s} = {7}\,TeV\) LHC, Phys. Lett. B 710 (2012) 207 [arXiv:1112.3024] [INSPIRE].

    ADS  Google Scholar 

  18. H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].

    ADS  Google Scholar 

  19. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012)131 [arXiv:1112.2703] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Arbey, M. Battaglia and F. Mahmoudi, Constraints on the MSSM from the Higgs sector: a pMSSM study of Higgs searches, \(B_{\text{s}}^0\)μ + μ and dark matter direct detection, Eur. Phys. J. C 72 (2012) 1906 [arXiv:1112.3032] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P.V. Niuwenhuizen and D. Freedman eds., North Holland, The Netherlands (1979).

  22. T. Yanagida, Horizontal symmetry and masses of neutrinos, in the proceedings of the Baryon number of the universe and unified theories, February 13-14, KEK, Tsukuba, Japan (1979).

    Google Scholar 

  23. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  24. S.L. Glashow, The future of elementary particle physics, NATO Adv. Study Inst. Ser. B Phys. 59 (1980) 687.

    Google Scholar 

  25. P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977)421 [INSPIRE].

    ADS  Google Scholar 

  26. A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].

    ADS  Google Scholar 

  27. S.-W. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

    ADS  Google Scholar 

  29. C. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].

    Article  ADS  Google Scholar 

  30. V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev. D 77 (2008)035005 [arXiv:0706.4311] [INSPIRE].

    ADS  Google Scholar 

  31. M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum stability, perturbativity and scalar singlet dark matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE].

    Article  ADS  Google Scholar 

  32. V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex singlet extension of the standard model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [INSPIRE].

    ADS  Google Scholar 

  33. M. Kadastik, K. Kannike and M. Raidal, Matter parity as the origin of scalar dark matter, Phys. Rev. D 81 (2010) 015002 [arXiv:0903.2475] [INSPIRE].

    ADS  Google Scholar 

  34. M. Kadastik, K. Kannike and M. Raidal, Dark matter as the signal of grand unification, Phys. Rev. D 80 (2009) 085020 [Erratum ibid. D 81 (2010) 029903] [arXiv:0907.1894] [INSPIRE].

    ADS  Google Scholar 

  35. L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H. Tytgat, The inert doublet model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].

    Article  ADS  Google Scholar 

  36. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].

    ADS  Google Scholar 

  37. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].

    ADS  Google Scholar 

  38. N.G. Deshpande and E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].

    ADS  Google Scholar 

  39. M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, EWSB from the soft portal into dark matter and prediction for direct detection, Phys. Rev. Lett. 104 (2010) 201301 [arXiv:0912.2729] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the CDMS result on dark matter and LHC physics, Phys. Lett. B 694 (2010) 242 [arXiv:0912.3797] [INSPIRE].

    ADS  Google Scholar 

  41. K. Huitu, K. Kannike, A. Racioppi and M. Raidal, Long-lived charged Higgs at LHC as a probe of scalar dark matter, JHEP 01 (2011) 010 [arXiv:1005.4409] [INSPIRE].

    Article  ADS  Google Scholar 

  42. XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Farina et al., Implications of XENON100 and LHC results for dark matter models, Nucl. Phys. B 853 (2011) 607 [arXiv:1104.3572] [INSPIRE].

    Article  ADS  Google Scholar 

  44. O. Buchmueller et al., Supersymmetry and dark matter in light of LHC2010 and Xenon100 Data, Eur. Phys. J. C 71 (2011) 1722 [arXiv:1106.2529] [INSPIRE].

    Article  ADS  Google Scholar 

  45. O. Buchmueller et al., Supersymmetry in light of 1/fb of LHC data, Eur. Phys. J. C 72 (2012)1878 [arXiv:1110.3568] [INSPIRE].

    Article  ADS  Google Scholar 

  46. G. Bertone et al., Global fits of the CMSSM including the first LHC and XENON100 data, JCAP 01 (2012) 015 [arXiv:1107.1715] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Fowlie, A. Kalinowski, M. Kazana, L. Roszkowski and Y.S. Tsai, Bayesian implications of current LHC and XENON100 search limits for the constrained MSSM, Phys. Rev. D 85 (2012)075012 [arXiv:1111.6098] [INSPIRE].

    ADS  Google Scholar 

  48. G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs 2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007)367 [hep-ph/0607059] [INSPIRE].

  50. LHCb collaboration, R. Aaij et al., Strong constraints on the rare decays B s → μ + μ and B 0 → μ + μ , arXiv:1203.4493 [INSPIRE].

  51. CMS collaboration, Summary plot at CMS wiki.

  52. S. Bethke, The 2009 world average of α s , Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [INSPIRE].

    Article  ADS  Google Scholar 

  53. Tevatron Electroweak Working Group, for the CDF and D0 collaboration, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb −1 of data, arXiv:1107.5255 [INSPIRE].

  54. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. 37 (2010) 075021 , and 2011 partial update for the 2012 edition [INSPIRE].

    Article  ADS  Google Scholar 

  55. D. Larson et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: power spectra and WMAP-derived parameters, Astrophys. J. Suppl. 192 (2011) 16 [arXiv:1001.4635] [INSPIRE].

    Article  ADS  Google Scholar 

  56. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α MZ, Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].

    ADS  Google Scholar 

  57. M. Misiak, H. Asatrian, K. Bieri, M. Czakon, A. Czarnecki, et al., Estimate of B(\(\overline B\)X(s)γ) at O \(\left( {\alpha_{\text{s}}^2} \right)\) Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].

    Article  ADS  Google Scholar 

  58. CMS and LHCb collaboration, Search for the rare decay \(B_s^0\)μ + μ at the LHC with the CMS and LHCb experiments Combination of LHC results of the search for B sμ + μ decays, PAS-BPH-11-019 (2011).

  59. O. Buchmueller et al., Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1, Eur. Phys. J. C 64 (2009) 391 [arXiv:0907.5568] [INSPIRE].

    Article  ADS  Google Scholar 

  60. N. Arkani-Hamed, A. Delgado and G. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006)108 [hep-ph/0601041] [INSPIRE].

    Article  ADS  Google Scholar 

  61. H. Baer, V. Barger, A. Lessa and X. Tata, LHC discovery potential for supersymmetry with \(\sqrt {s} = {7}\,TeV\) and 5-30 fb −1, Phys. Rev. D 85 (2012)051701 [arXiv:1112.3044][INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristjan Kannike.

Additional information

ArXiv ePrint: 1112.3647

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadastik, M., Kannike, K., Racioppi, A. et al. Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology. J. High Energ. Phys. 2012, 61 (2012). https://doi.org/10.1007/JHEP05(2012)061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2012)061

Keywords

Navigation