Skip to main content
Log in

Supersymmetry with light stops

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Recent LHC data, together with the electroweak naturalness argument, suggest that the top squarks may be significantly lighter than the other sfermions. We present supersymmetric models in which such a split spectrum is obtained through “geometries”: being “close to” electroweak symmetry breaking implies being “away from” supersymmetry breaking, and vice versa. In particular, we present models in 5D warped spacetime, in which supersymmetry breaking and Higgs fields are located on the ultraviolet and infrared branes, respectively, and the top multiplets are localized to the infrared brane. The hierarchy of the Yukawa matrices can be obtained while keeping near flavor degeneracy between the first two generation sfermions, avoiding stringent constraints from flavor and CP violation. Through the AdS/CFT correspondence, the models can be interpreted as purely 4D theories in which the top and Higgs multiplets are composites of some strongly interacting sector exhibiting nontrivial dynamics at a low energy. Because of the compositeness of the Higgs and top multiplets, Landau pole constraints for the Higgs and top couplings apply only up to the dynamical scale, allowing for a relatively heavy Higgs boson, including m h = 125 GeV as suggested by the recent LHC data. We analyze electroweak symmetry breaking for a well-motivated subset of these models, and find that fine-tuning in electroweak symmetry breaking is indeed ameliorated. We also discuss a flat space realization of the scenario in which supersymmetry is broken by boundary conditions, with the top multiplets localized to a brane and other matter multiplets delocalized in the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].

    Article  ADS  Google Scholar 

  2. ATLAS collaboration, Combination of Higgs boson searches with up to 4.9 fb −1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC, ATLAS-CONF-2011-163 (2011).

  3. CMS collaboration, Combination of SM Higgs searches, PAS-HIG-11-032 (2011).

  4. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].

    Article  ADS  Google Scholar 

  5. M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett. B 243 (1990) 250 [INSPIRE].

    Article  ADS  Google Scholar 

  6. S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B 466 (1996) 3 [hep-ph/9507462] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].

    Article  ADS  Google Scholar 

  9. P. Binetruy and E. Dudas, Gaugino condensation and the anomalous U(1), Phys. Lett. B 389 (1996) 503 [hep-th/9607172] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G. Dvali and A. Pomarol, Anomalous U(1) as a mediator of supersymmetry breaking, Phys. Rev. Lett. 77 (1996) 3728 [hep-ph/9607383] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J. Hisano, K. Kurosawa and Y. Nomura, Large squark and slepton masses for the first two generations in the anomalous U(1) SUSY breaking models, Phys. Lett. B 445 (1999) 316 [hep-ph/9810411] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Hisano, K. Kurosawa and Y. Nomura, Natural effective supersymmetry, Nucl. Phys. B 584 (2000) 3 [hep-ph/0002286] [INSPIRE].

    Article  ADS  Google Scholar 

  13. N. Craig, D. Green and A. Katz, (De)constructing a natural and flavorful supersymmetric standard model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].

    Article  ADS  Google Scholar 

  14. R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and minimal flavour violation in supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].

    Article  ADS  Google Scholar 

  15. R. Essig, E. Izaguirre, J. Kaplan and J.G. Wacker, Heavy flavor simplified models at the LHC, JHEP 01 (2012) 074 [arXiv:1110.6443] [INSPIRE].

    Article  ADS  Google Scholar 

  16. R. Auzzi, A. Giveon and S.B. Gudnason, Flavor of quiver-like realizations of effective supersymmetry, JHEP 02 (2012) 069 [arXiv:1112.6261] [INSPIRE].

    Article  ADS  Google Scholar 

  17. C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, arXiv:1110.6926.

  19. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259].

    Article  ADS  Google Scholar 

  20. G. Burdman and Y. Nomura, Holographic theories of electroweak symmetry breaking without a Higgs boson, Phys. Rev. D 69 (2004) 115013 [hep-ph/0312247] [INSPIRE].

    ADS  Google Scholar 

  21. Y. Nomura, Supersymmetric unification in warped space, hep-ph/0410348 [INSPIRE].

  22. J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].

    Article  ADS  Google Scholar 

  23. L. da Rold and A. Pomarol, Chiral symmetry breaking from five-dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218].

    Article  ADS  Google Scholar 

  24. A. Birkedal, Z. Chacko and Y. Nomura, Relaxing the upper bound on the mass of the lightest supersymmetric Higgs boson, Phys. Rev. D 71 (2005) 015006 [hep-ph/0408329] [INSPIRE].

    ADS  Google Scholar 

  25. T. Gherghetta and A. Pomarol, The standard model partly supersymmetric, Phys. Rev. D 67 (2003) 085018 [hep-ph/0302001].

    MathSciNet  ADS  Google Scholar 

  26. R. Sundrum, SUSY splits, but then returns, JHEP 01 (2011) 062 [arXiv:0909.5430] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. T. Gherghetta, B. von Harling and N. Setzer, A natural little hierarchy for RS from accidental SUSY, JHEP 07 (2011) 011 [arXiv:1104.3171].

    Article  ADS  Google Scholar 

  28. C. Csáki, L. Randall and J. Terning, Light stops from Seiberg duality, arXiv:1201.1293 [INSPIRE].

  29. N. Craig, M. McCullough and J. Thaler, The new flavor of higgsed gauge mediation, JHEP 03 (2012) 049 [arXiv:1201.2179] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Krippendorf, H.P. Nilles, M. Ratz and M.W. Winkler, The heterotic string yields natural supersymmetry, Phys. Lett. B 712 (2012) 87 [arXiv:1201.4857].

    Article  MathSciNet  ADS  Google Scholar 

  31. L. Randall and R. Sundrum, Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. D. Martí and A. Pomarol, Supersymmetric theories with compact extra dimensions in N = 1 superfields, Phys. Rev. D 64 (2001) 105025 [hep-th/0106256] [INSPIRE].

    ADS  Google Scholar 

  33. N. Arkani-Hamed, T. Gregoire and J.G. Wacker, Higher dimensional supersymmetry in 4D superspace, JHEP 03 (2002) 055 [hep-th/0101233] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. Y. Nomura, Higgsless theory of electroweak symmetry breaking from warped space, JHEP 11 (2003) 050 [hep-ph/0309189].

    Article  ADS  Google Scholar 

  36. Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. G.F. Giudice, M. Nardecchia and A. Romanino, Hierarchical soft terms and flavor physics, Nucl. Phys. B 813 (2009) 156 [arXiv:0812.3610] [INSPIRE].

    Article  ADS  Google Scholar 

  38. F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].

    Article  ADS  Google Scholar 

  39. K. Blum, Y. Grossman, Y. Nir and G. Perez, Combining K 0 - K 0 mixing and D 0 - D 0 mixing to constrain the flavor structure of new physics, Phys. Rev. Lett. 102 (2009) 211802 [arXiv:0903.2118] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Hamidi and C. Vafa, Interactions on orbifolds, Nucl. Phys. B 279 (1987) 465 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. L.E. Ibáñez, Hierarchy of quark-lepton masses in orbifold superstring compactification, Phys. Lett. B 181 (1986) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  42. N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [INSPIRE].

    ADS  Google Scholar 

  43. N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. R. Barbieri, L.J. Hall, Y. Nomura and V.S. Rychkov, Supersymmetry without a light Higgs boson, Phys. Rev. D 75 (2007) 035007 [hep-ph/0607332] [INSPIRE].

    ADS  Google Scholar 

  46. A. Delgado and T.M. Tait, A fat Higgs with a fat top, JHEP 07 (2005) 023 [hep-ph/0504224] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. ATLAS Collaboration, Search for scalar bottom pair production with the ATLAS detector in pp collisions at \( \sqrt {s} = 7\;TeV \), arXiv:1112.3832.

  48. H. Davoudiasl, S. Gopalakrishna, E. Ponton and J. Santiago, Warped 5-dimensional models: phenomenological status and experimental prospects, New J. Phys. 12 (2010) 075011 [arXiv:0908.1968] [INSPIRE].

    Article  ADS  Google Scholar 

  49. G. Isidori, Y. Nir and G. Perez, Flavor physics constraints for physics beyond the standard model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].

    Article  ADS  Google Scholar 

  50. W.D. Goldberger, Y. Nomura and D.R. Smith, Warped supersymmetric grand unification, Phys. Rev. D 67 (2003) 075021 [hep-ph/0209158] [INSPIRE].

    ADS  Google Scholar 

  51. T. Gherghetta, Partly supersymmetric grand unification, Phys. Rev. D 71 (2005) 065001 [hep-ph/0411090] [INSPIRE].

    ADS  Google Scholar 

  52. A. Brignole, J. Casas, J. Espinosa and I. Navarro, Low scale supersymmetry breaking: Effective description, electroweak breaking and phenomenology, Nucl. Phys. B 666 (2003) 105 [hep-ph/0301121] [INSPIRE].

    Article  ADS  Google Scholar 

  53. Y. Nomura, D. Poland and B. Tweedie, μB-driven electroweak symmetry breaking, Phys. Lett. B 633 (2006) 573 [hep-ph/0509244] [INSPIRE].

    Article  ADS  Google Scholar 

  54. R. Franceschini and S. Gori, Solving the μ problem with a heavy Higgs boson, JHEP 05 (2011) 084 [arXiv:1005.1070].

    Article  ADS  Google Scholar 

  55. E. Bertuzzo and M. Farina, Higgs boson signals in lambda-SUSY with a Scale Invariant Superpotential, Phys. Rev. D 85 (2012) 015011 [arXiv:1105.5389] [INSPIRE].

    ADS  Google Scholar 

  56. A. de Gouvêa, A. Friedland and H. Murayama, Next-to-minimal supersymmetric standard model with the gauge mediation of supersymmetry breaking, Phys. Rev. D 57 (1998) 5676 [hep-ph/9711264] [INSPIRE].

    ADS  Google Scholar 

  57. U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. B.A. Dobrescu and K.T. Matchev, Light axion within the next-to-minimal supersymmetric standard model, JHEP 09 (2000) 031 [hep-ph/0008192].

    Article  ADS  Google Scholar 

  59. M. Dine, Y. Nir and Y. Shirman, Variations on minimal gauge-mediated supersymmetry breaking, Phys. Rev. D 55 (1997) 1501 [hep-ph/9607397] [INSPIRE].

    ADS  Google Scholar 

  60. S.P. Martin, Fermion self-energies and pole masses at two-loop order in a general renormalizable theory with massless gauge bosons, Phys. Rev. D 72 (2005) 096008 [hep-ph/0509115] [INSPIRE].

    ADS  Google Scholar 

  61. Y. Nomura and K. Suzuki, Gauge mediation models with neutralino dark matter, Phys. Rev. D 68 (2003) 075005 [hep-ph/0110040] [INSPIRE].

    ADS  Google Scholar 

  62. C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967].

    Article  MathSciNet  ADS  Google Scholar 

  63. Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB after 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].

    Article  ADS  Google Scholar 

  64. R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].

    Article  ADS  Google Scholar 

  65. J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Observables in low-energy superstring models, Mod. Phys. Lett. A 1 (1986) 57 [INSPIRE].

    Article  ADS  Google Scholar 

  66. R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the CERN LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].

    ADS  Google Scholar 

  67. A. Pomarol and M. Quirós, The Standard model from extra dimensions, Phys. Lett. B 438 (1998) 255 [hep-ph/9806263] [INSPIRE].

    Article  ADS  Google Scholar 

  68. I. Antoniadis, S. Dimopoulos, A. Pomarol and M. Quirós, Soft masses in theories with supersymmetry breaking by TeV compactification, Nucl. Phys. B 544 (1999) 503 [hep-ph/9810410] [INSPIRE].

    Article  ADS  Google Scholar 

  69. R. Barbieri, L.J. Hall and Y. Nomura, A constrained standard model from a compact extra dimension, Phys. Rev. D 63 (2001) 105007 [hep-ph/0011311] [INSPIRE].

    ADS  Google Scholar 

  70. R. Barbieri, L.J. Hall and Y. Nomura, Softly broken supersymmetric desert from orbifold compactification, Phys. Rev. D 66 (2002) 045025 [hep-ph/0106190] [INSPIRE].

    ADS  Google Scholar 

  71. R. Barbieri, L.J. Hall and Y. Nomura, Models of Scherk-Schwarz symmetry breaking in 5D: classification and calculability, Nucl. Phys. B 624 (2002) 63 [hep-th/0107004] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. J.D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, hep-ph/0306127.

  73. J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].

    ADS  Google Scholar 

  74. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    Article  ADS  Google Scholar 

  75. L.J. Hall and Y. Nomura, Spread supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes L. L. Roberts.

Additional information

ArXiv ePrint: 1202.6339

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, G., Nomura, Y. & Roberts, H.L.L. Supersymmetry with light stops. J. High Energ. Phys. 2012, 32 (2012). https://doi.org/10.1007/JHEP06(2012)032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)032

Keywords

Navigation