Skip to main content
Log in

A natural little hierarchy for RS from accidental SUSY

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We use supersymmetry to address the little hierarchy problem in Randall-Sundrum models by naturally generating a hierarchy between the IR scale and the electroweak scale. Supersymmetry is broken on the UV brane which triggers the stabilization of the warped extra dimension at an IR scale of order 10 TeV. The Higgs and top quark live near the IR brane whereas light fermion generations are localized towards the UV brane. Supersymmetry breaking causes the first two sparticle generations to decouple, thereby avoiding the supersymmetric flavour and CP problems, while an accidental R-symmetry protects the gaugino mass. The resulting low-energy sparticle spectrum consists of stops, gauginos and Higgsinos which are sufficient to stabilize the little hierarchy between the IR scale and the electroweak scale. Finally, the supersymmetric little hierarchy problem is ameliorated by introducing a singlet Higgs field on the IR brane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Y. Grossman and M. Neubert, Neutrino masses and mixings in non-factorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. S.J. Huber and Q. Shafi, Fermion Masses, Mixings and Proton Decay in a Randall-Sundrum Model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [SPIRES].

    ADS  Google Scholar 

  5. K. Agashe, G. Perez and A. Soni, B-factory signals for a warped extra dimension, Phys. Rev. Lett. 93 (2004) 201804 [hep-ph/0406101] [SPIRES].

    Article  ADS  Google Scholar 

  6. K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [SPIRES].

    ADS  Google Scholar 

  7. UTfit collaboration, M. Bona et al., Model-independent constraints onF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [SPIRES].

    Article  ADS  Google Scholar 

  8. K. Agashe et al., LHC Signals for Warped Electroweak Neutral Gauge Bosons, Phys. Rev. D 76 (2007) 115015 [arXiv:0709.0007] [SPIRES].

    ADS  Google Scholar 

  9. C. Csáki, A. Falkowski and A. Weiler, The Flavor of the Composite Pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [SPIRES].

    Article  ADS  Google Scholar 

  10. G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, arXiv:1002.0900 [SPIRES].

  11. A.L. Fitzpatrick, G. Perez and L. Randall, Flavor from Minimal Flavor Violation & a Viable Randall-Sundrum Model, arXiv:0710.1869 [SPIRES].

  12. A.L. Fitzpatrick, L. Randall and G. Perez, Flavor anarchy in a Randall-Sundrum model with 5D minimal flavor violation and a low Kaluza-Klein scale, Phys. Rev. Lett. 100 (2008) 171604 [SPIRES].

    Article  ADS  Google Scholar 

  13. C. Csáki, A. Falkowski and A. Weiler, A Simple Flavor Protection for RS, Phys. Rev. D 80 (2009) 016001 [arXiv:0806.3757] [SPIRES].

    ADS  Google Scholar 

  14. J. Santiago, Minimal Flavor Protection: A New Flavor Paradigm in Warped Models, JHEP 12 (2008) 046 [arXiv:0806.1230] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. C. Csáki, G. Perez, Z. Surujon and A. Weiler, Flavor Alignment via Shining in RS, Phys. Rev. D 81 (2010) 075025 [arXiv:0907.0474] [SPIRES].

    ADS  Google Scholar 

  16. M.-C. Chen, K.T. Mahanthappa and F. Yu, A Viable Randall-Sundrum Model for Quarks and Leptons with T’ Family Symmetry, Phys. Rev. D 81 (2010) 036004 [arXiv:0907.3963] [SPIRES].

    ADS  Google Scholar 

  17. R. Barbieri and A. Strumia, The ’LEP paradox’, hep-ph/0007265 [SPIRES].

  18. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett. B 243 (1990) 250 [SPIRES].

    ADS  Google Scholar 

  20. M. Dine, R.G. Leigh and A. Kagan, Flavor symmetries and the problem of squark degeneracy, Phys. Rev. D 48 (1993) 4269 [hep-ph/9304299] [SPIRES].

    ADS  Google Scholar 

  21. P. Pouliot and N. Seiberg, (S)quark masses and nonAbelian horizontal symmetries, Phys. Lett. B 318 (1993) 169 [hep-ph/9308363] [SPIRES].

    ADS  Google Scholar 

  22. A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B 466 (1996) 3 [hep-ph/9507462] [SPIRES].

    Article  ADS  Google Scholar 

  23. R. Barbieri, G.R. Dvali and L.J. Hall, Predictions From A U(2) Flavour Symmetry In Supersymmetric Theories, Phys. Lett. B 377 (1996) 76 [hep-ph/9512388] [SPIRES].

    ADS  Google Scholar 

  24. R. Barbieri, L.J. Hall and A. Romanino, Consequences of a U(2) flavour symmetry, Phys. Lett. B 401 (1997) 47 [hep-ph/9702315] [SPIRES].

    ADS  Google Scholar 

  25. A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [SPIRES].

    ADS  Google Scholar 

  26. R. Barbieri and G.F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [SPIRES].

    Article  ADS  Google Scholar 

  27. S. Dimopoulos and G.F. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [SPIRES].

    ADS  Google Scholar 

  28. N. Arkani-Hamed and H. Murayama, Can the supersymmetric flavor problem decouple?, Phys. Rev. D 56 (1997) 6733 [hep-ph/9703259] [SPIRES].

    ADS  Google Scholar 

  29. G.F. Giudice, M. Nardecchia and A. Romanino, Hierarchical Soft Terms and Flavor Physics, Nucl. Phys. B 813 (2009) 156 [arXiv:0812.3610] [SPIRES].

    Article  ADS  Google Scholar 

  30. R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A Non Standard Supersymmetric Spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [SPIRES].

    Article  ADS  Google Scholar 

  31. T. Gherghetta and A. Pomarol, The standard model partly supersymmetric, Phys. Rev. D 67 (2003) 085018 [hep-ph/0302001] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. R. Sundrum, SUSY Splits, But Then Returns, JHEP 01 (2011) 062 [arXiv:0909.5430] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Kehagias and K. Tamvakis, Localized gravitons, gauge bosons and chiral fermions in smooth spaces generated by a bounce, Phys. Lett. B 504 (2001) 38 [hep-th/0010112] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  34. B. Batell and T. Gherghetta, Localized U(1) gauge fields, millicharged particles and holography, Phys. Rev. D 73 (2006) 045016 [hep-ph/0512356] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. T. Gherghetta and B. von Harling, A W arped Model of Dark Matter, JHEP 04 (2010) 039 [arXiv:1002.2967] [SPIRES].

    Article  ADS  Google Scholar 

  36. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [SPIRES].

    Article  ADS  Google Scholar 

  37. N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. M. Redi and B. Gripaios, Partially Supersymmetric Composite Higgs Models, JHEP 08 (2010) 116 [arXiv:1004.5114] [SPIRES].

    Article  ADS  Google Scholar 

  39. R. Barbieri, L.J. Hall, Y. Nomura and V.S. Rychkov, Supersymmetry without a Light Higgs Boson, Phys. Rev. D 75 (2007) 035007 [hep-ph/0607332] [SPIRES].

    ADS  Google Scholar 

  40. R. Franceschini and S. Gori, Solving the mu problem with a heavy Higgs boson, JHEP 05 (2011) 084 [arXiv:1005.1070] [SPIRES].

    Article  ADS  Google Scholar 

  41. R. Kitano, G.D. Kribs and H. Murayama, Electroweak symmetry breaking via UV insensitive anomaly mediation, Phys. Rev. D 70 (2004) 035001 [hep-ph/0402215] [SPIRES].

    ADS  Google Scholar 

  42. L. Cavicchia, R. Franceschini and V.S. Rychkov, Supersymmetry without a light Higgs boson at the LHC, Phys. Rev. D 77 (2008) 055006 [arXiv:0710.5750] [SPIRES].

    ADS  Google Scholar 

  43. J. Cao and J.M. Yang, Current experimental constraints on NMSSM with large lambda, Phys. Rev. D 78 (2008) 115001 [arXiv:0810.0989] [SPIRES].

    ADS  Google Scholar 

  44. P. Lodone, Naturalness bounds in extensions of the MSSM without a light Higgs boson, JHEP 05 (2010) 068 [arXiv:1004.1271] [SPIRES].

    Article  ADS  Google Scholar 

  45. R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, The minimal supersymmetric fat Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349] [SPIRES].

    ADS  Google Scholar 

  46. A. Birkedal, Z. Chacko and Y. Nomura, Relaxing the upper bound on the mass of the lightest supersymmetric Higgs boson, Phys. Rev. D 71 (2005) 015006 [hep-ph/0408329] [SPIRES].

    ADS  Google Scholar 

  47. R. Altendorfer, J. Bagger and D. Nemeschansky, Supersymmetric Randall-Sundrum scenario, Phys. Rev. D 63 (2001) 125025 [hep-th/0003117] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. H.-S. Goh, M.A. Luty and S.-P. Ng, Supersymmetry without supersymmetry, JHEP 01 (2005) 040 [hep-th/0309103] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. D. Marti and A. Pomarol, Supersymmetric theories with compact extra dimensions in N = 1 superfields, Phys. Rev. D 64 (2001) 105025 [hep-th/0106256] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. M.A. Luty and R. Sundrum, Hierarchy Stabilization in Warped Supersymmetry, Phys. Rev. D 64 (2001) 065012 [hep-th/0012158] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. S.A. Abel, S. Sarkar and P.L. White, On the Cosmological Domain Wall Problem for the Minimally Extended Supersymmetric Standard Model, Nucl. Phys. B 454 (1995) 663 [hep-ph/9506359] [SPIRES].

    Article  ADS  Google Scholar 

  52. S.A. Abel, Destabilising divergences in the NMSSM, Nucl. Phys. B 480 (1996) 55 [hep-ph/9609323] [SPIRES].

    Article  ADS  Google Scholar 

  53. C. Panagiotakopoulos and K. Tamvakis, Stabilized NMSSM without domain walls, Phys. Lett. B 446 (1999) 224 [hep-ph/9809475] [SPIRES].

    ADS  Google Scholar 

  54. S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [SPIRES].

    Article  ADS  Google Scholar 

  55. Z. Chacko and M.A. Luty, Radion mediated supersymmetry breaking, JHEP 05 (2001) 067 [hep-ph/0008103] [SPIRES].

    Article  ADS  Google Scholar 

  56. M.A. Luty, Weak scale supersymmetry without weak scale supergravity, Phys. Rev. Lett. 89 (2002) 141801 [hep-th/0205077] [SPIRES].

    Article  ADS  Google Scholar 

  57. U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. S. Mizuta and M. Yamaguchi, Coannihilation Effects and Relic Abundance of Higgsino-Dominant LSPs, Phys. Lett. B 298 (1993) 120 [hep-ph/9208251] [SPIRES].

    ADS  Google Scholar 

  59. R. Dermisek and J.F. Gunion, Escaping the large fine tuning and little hierarchy problems in the next to minimal supersymmetric model and h → aa decays, Phys. Rev. Lett. 95 (2005) 041801 [hep-ph/0502105] [SPIRES].

    Article  ADS  Google Scholar 

  60. R. Dermisekand J.F. Gunion, The NMSSM close to the R-symmetry limit and naturalness in h → aa decays for m(a) < 2 m(b), Phys. Rev. D 75 (2007) 075019 [hep-ph/0611142] [SPIRES].

    ADS  Google Scholar 

  61. M.J. Strassler, Non-supersymmetric theories with light scalar fields and large hierarchies, hep-th/0309122 [SPIRES].

  62. R.N. Mohapatra and J.C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D 11 (1975) 2558 [SPIRES].

    ADS  Google Scholar 

  63. G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [SPIRES].

    ADS  Google Scholar 

  64. S.P. Martin, A Supersymmetry Primer, hep-ph/9709356 [SPIRES].

  65. H. Davoudiasl, S. Gopalakrishna, E. Ponton and J. Santiago, Warped 5-Dimensional Models: Phenomenological Status and Experimental Prospects, New J. Phys. 12 (2010) 075011 [arXiv:0908.1968] [SPIRES].

    Article  ADS  Google Scholar 

  66. S.D.L. Amigo, A.E. Blechman, P.J. Fox and E. Poppitz, R-symmetric gauge mediation, JHEP 01 (2009) 018 [arXiv:0809.1112] [SPIRES].

    Article  Google Scholar 

  67. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and χSB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  68. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  69. T. Gherghetta, Partly supersymmetric grand unification, Phys. Rev. D 71 (2005) 065001 [hep-ph/0411090] [SPIRES].

    ADS  Google Scholar 

  70. K. Agashe, R. Contino and R. Sundrum, Top compositeness and precision unification, Phys. Rev. Lett. 95 (2005) 171804 [hep-ph/0502222] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedict von Harling.

Additional information

ArXiv ePrint: 1104.3171

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gherghetta, T., von Harling, B. & Setzer, N. A natural little hierarchy for RS from accidental SUSY. J. High Energ. Phys. 2011, 11 (2011). https://doi.org/10.1007/JHEP07(2011)011

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)011

Keywords

Navigation