Skip to main content
Log in

SUSY splits, but then returns

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the phenomenon of accidental or “emergent” supersymmetry within gauge theory and connect it to the scenarios of Split Supersymmetry and Higgs compositeness. Combining these elements leads to a significant refinement and extension of the proposal of Partial Supersymmetry, in which supersymmetry is broken at very high energies but with a remnant surviving to the weak scale. The Hierarchy Problem is then solved by a non-trivial partnership between supersymmetry and compositeness, giving a promising approach for reconciling Higgs naturalness with the wealth of precision experimental data. We discuss aspects of this scenario from the AdS/CFT dual viewpoint of higher-dimensional warped compactification. It is argued that string theory constructions with high scale supersymmetry breaking which realize warped/composite solutions to the Hierarchy Problem may well be accompanied by some or all of the features described. The central phenomenological considerations and expectations are discussed, with more detailed modelling within warped effective field theory reserved for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Csáki, TASI lectures on extra dimensions and branes, hep-ph/0404096 [SPIRES].

  2. R. Sundrum, To the fifth dimension and back (TASI 2004), hep-th/0508134 [SPIRES].

  3. H. Davoudiasl, S. Gopalakrishna, E. Ponton and J. Santiago, Warped 5-dimensional models: phenomenological status and experimental prospects, New J. Phys. 12 (2010) 075011 [arXiv:0908.1968] [SPIRES].

    Article  ADS  Google Scholar 

  4. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  6. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  8. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. H.L. Verlinde, Holography and compactification, Nucl. Phys. B 580 (2000) 264 [hep-th/9906182] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. J. Maldacena, unpublished remarks.

  11. E. Witten, Comments by E. Witten on Sundrum & Giddings talk, talk given at IT P Santa Barbara conference “New dimensions in field theory and string theory”, November 17–20, Santa Barbara, U.S.A. (1999).

  12. S.S. Gubser, AdS/CFT and gravity, Phys. Rev. D 63 (2001) 084017 [hep-th/9912001] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. E.P. Verlinde and H.L. Verlinde, RG-flow, gravity and the cosmological constant, JHEP 05 (2000) 034 [hep-th/9912018] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP 05 (2001) 064 [hep-th/0105048] [SPIRES].

    Article  Google Scholar 

  15. N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. M.J. Strassler, Non-supersymmetric theories with light scalar fields and large hierarchies, hep-th/0309122 [SPIRES].

  18. S. Kachru, D. Simic and S.P. Trivedi, Stable non-supersymmetric throats in string theory, JHEP 05 (2010) 067 [arXiv:0905.2970] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  19. M.A. Luty, Weak scale supersymmetry without weak scale supergravity, Phys. Rev. Lett. 89 (2002) 141801 [hep-th/0205077] [SPIRES].

    Article  ADS  Google Scholar 

  20. O. DeWolfe and S.B. Giddings, Scales and hierarchies in warped compactifications and brane worlds, Phys. Rev. D 67 (2003) 066008 [hep-th/0208123] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. T. Gherghetta and A. Pomarol, The standard model partly supersymmetric, Phys. Rev. D 67 (2003) 085018 [hep-ph/0302001] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. H.-S. Goh, M.A. Luty and S.-P. Ng, Supersymmetry without supersymmetry, JHEP 01 (2005) 040 [hep-th/0309103] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [SPIRES].

    Article  ADS  Google Scholar 

  24. G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [SPIRES].

    Article  ADS  Google Scholar 

  25. N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [SPIRES].

    ADS  Google Scholar 

  27. R. Sundrum, in preparation.

  28. T.A. Kramer, Partially composite particle physics with and without supersymmetry, Ph.D. thesis, Johns Hopkins University, Baltimore, U.S.A. (2008).

  29. C. Kokorelis, N = 1 supersymmetric standard models with no massless exotics from intersecting branes, hep-th/0406258 [SPIRES].

  30. C. Kokorelis, Standard model compactifications of IIA Z 3 × Z 3 orientifolds from intersecting D6-branes, Nucl. Phys. B 732 (2006) 341 [hep-th/0412035] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. M.A. Luty and R. Rattazzi, Soft supersymmetry breaking in deformed moduli spaces, conformal theories and N = 2 Yang-Mills theory, JHEP 11 (1999) 001 [hep-th/9908085] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. D.B. Kaplan, Dynamical generation of supersymmetry, Phys. Lett. B 136 (1984) 162 [SPIRES].

    ADS  Google Scholar 

  33. P. Breitenlohner and D.Z. Freedman, Positive energy in Anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. B 115 (1982) 197 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  34. G. Arutyunov and S. Frolov, Four-point functions of lowest weight CPOs in N = 4 SYM(4) in supergravity approximation, Phys. Rev. D 62 (2000) 064016 [hep-th/0002170] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. G. Arutyunov, S. Frolov and A.C. Petkou, Operator product expansion of the lowest weight CPOs in N = 4 SYM(4) at strong coupling, Nucl. Phys. B 586 (2000) 547 [Erratum ibid. B 609 (2001) 539] [hep-th/0005182] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. E. D’Hoker, S.D. Mathur, A. Matusis and L. Rastelli, The operator product expansion of N = 4 SYM and the 4-point functions of supergravity, Nucl. Phys. B 589 (2000) 38 [hep-th/9911222] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. E. D’Hoker and D.Z. Freedman, Gauge boson exchange in AdS(d + 1), Nucl. Phys. B 544 (1999) 612 [hep-th/9809179] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [SPIRES].

    Article  ADS  Google Scholar 

  40. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].

    Article  ADS  Google Scholar 

  41. N. Maru and N. Okada, Supersymmetric radius stabilization in warped extra dimensions, Phys. Rev. D 70 (2004) 025002 [hep-th/0312148] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].

    ADS  Google Scholar 

  43. H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [SPIRES].

    ADS  Google Scholar 

  44. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [SPIRES].

    ADS  Google Scholar 

  45. H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [SPIRES].

    ADS  Google Scholar 

  46. M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [SPIRES].

    Article  ADS  Google Scholar 

  47. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].

    Article  ADS  Google Scholar 

  48. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].

    Article  ADS  Google Scholar 

  49. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].

    Article  ADS  Google Scholar 

  51. W.D. Goldberger and M.B. Wise, Bulk fields in the Randall-Sundrum compactification scenario, Phys. Rev. D 60 (1999) 107505 [hep-ph/9907218] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  52. N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [SPIRES].

    ADS  Google Scholar 

  53. E.A. Mirabelli and M. Schmaltz, Yukawa hierarchies from split fermions in extra dimensions, Phys. Rev. D 61 (2000) 113011 [hep-ph/9912265] [SPIRES].

    ADS  Google Scholar 

  54. Y. Grossman and M. Neubert, Neutrino masses and mixings in non-factorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  55. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [SPIRES].

    ADS  Google Scholar 

  57. S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [SPIRES].

    Article  ADS  Google Scholar 

  58. H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  59. S. Chang, J. Hisano, H. Nakano, N. Okada and M. Yamaguchi, Bulk standard model in the Randall-Sundrum background, Phys. Rev. D 62 (2000) 084025 [hep-ph/9912498] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  60. S.J. Huber and Q. Shafi, Higgs mechanism and bulk gauge boson masses in the Randall-Sundrum model, Phys. Rev. D 63 (2001) 045010 [hep-ph/0005286] [SPIRES].

    ADS  Google Scholar 

  61. S.J. Huber, C.-A. Lee and Q. Shafi, Kaluza-Klein excitations of W and Z at the LHC?, Phys. Lett. B 531 (2002) 112 [hep-ph/0111465] [SPIRES].

    ADS  Google Scholar 

  62. C. Csáki, J. Erlich and J. Terning, The effective lagrangian in the Randall-Sundrum model and electroweak physics, Phys. Rev. D 66 (2002) 064021 [hep-ph/0203034] [SPIRES].

    ADS  Google Scholar 

  63. J.L. Hewett, F.J. Petriello and T.G. Rizzo, Precision measurements and fermion geography in the Randall-Sundrum model revisited, JHEP 09 (2002) 030 [hep-ph/0203091] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  64. G. Burdman, Constraints on the bulk standard model in the Randall-Sundrum scenario, Phys. Rev. D 66 (2002) 076003 [hep-ph/0205329] [SPIRES].

    ADS  Google Scholar 

  65. D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [SPIRES].

    Article  ADS  Google Scholar 

  66. R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  67. K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [SPIRES].

    ADS  Google Scholar 

  68. C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [SPIRES].

    Article  ADS  Google Scholar 

  69. S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [SPIRES].

    Article  ADS  Google Scholar 

  70. M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [SPIRES].

    Article  ADS  Google Scholar 

  71. K. Agashe, A. Azatov and L. Zhu, Flavor violation tests of warped/composite SM in the two-site approach, Phys. Rev. D 79 (2009) 056006 [arXiv:0810.1016] [SPIRES].

    ADS  Google Scholar 

  72. K. Blum, Y. Grossman, Y. Nir and G. Perez, Combining \( K{ - }\bar{K} \) mixing and \( D{ - }\bar{D} \) mixing to constrain the flavor structure of new physics, Phys. Rev. Lett. 102 (2009) 211802 [arXiv:0903.2118] [SPIRES].

    Article  ADS  Google Scholar 

  73. Y. Grossman, Y. Nir and G. Perez, Testing new indirect CP-violation, Phys. Rev. Lett. 103 (2009) 071602 [arXiv:0904.0305] [SPIRES].

    Article  ADS  Google Scholar 

  74. O. Gedalia, G. Isidori and G. Perez, Combining direct & indirect kaon CP-violation to constrain the warped KK scale, Phys. Lett. B 682 (2009) 200 [arXiv:0905.3264] [SPIRES].

    ADS  Google Scholar 

  75. O. Gedalia, Y. Grossman, Y. Nir and G. Perez, Lessons from Recent Measurements of \( D{ - }\bar{D} \) mixing, Phys. Rev. D 80 (2009) 055024 [arXiv:0906.1879] [SPIRES].

    ADS  Google Scholar 

  76. R.N. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [SPIRES].

    ADS  Google Scholar 

  77. G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [SPIRES].

    ADS  Google Scholar 

  78. K. Agashe, R. Contino and R. Sundrum, Top compositeness and precision unification, Phys. Rev. Lett. 95 (2005) 171804 [hep-ph/0502222] [SPIRES].

    Article  ADS  Google Scholar 

  79. Y. Zhang, H. An, X. Ji and R.N. Mohapatra, General CP-violation in minimal left-right symmetric model and constraints on the right-handed scale, Nucl. Phys. B 802 (2008) 247 [arXiv:0712.4218] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Sundrum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundrum, R. SUSY splits, but then returns. J. High Energ. Phys. 2011, 62 (2011). https://doi.org/10.1007/JHEP01(2011)062

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2011)062

Keywords

Navigation