Skip to main content
Log in

Insights into growth kinetics and roles of enzymes of Krebs’ cycle and sulfur oxidation during exochemolithoheterotrophic growth of Achromobacter aegrifaciens NCCB 38021 on succinate with thiosulfate as the auxiliary electron donor

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Achromobacter aegrifaciens NCCB 38021 was grown heterotrophically on succinate versus exochemolithoheterotrophically on succinate with thiosulfate as auxiliary electron donor. In batch culture, no significant differences in specific molar growth yield or specific growth rate were found for the two growth conditions, but in continuous culture in the succinate-limited chemostat, the maximum specific growth yield coefficient increased by 23.3% with thiosulfate present, consistent with previous studies of endo- and exochemolithoheterotrophs and thermodynamic predictions. Thiosulfate oxidation was coupled to respiration at cytochrome c551, and thiosulfate-dependent ATP biosynthesis occurred. Specific activities of cytochrome c-linked thiosulfate dehydrogenase (E.C. 1.8.2.2) and two other enzymes of sulfur metabolism were significantly higher in exochemolithoheterotrophically grown cell extracts, while those of succinyl-transferring 2-oxoglutarate dehydrogenase (E.C. 1.2.4.2), fumarate hydratase (E.C. 4.2.1.2) and malate dehydrogenase (NAD+, E.C. 1.1.1.37) were significantly lower—presumably owing to less need to generate reducing equivalents during Krebs’ cycle, since they could be produced from thiosulfate oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anthony C (1980) Methanol as a substrate: theoretical aspects. In: Harrison DEF, Higgins IJ, Watkinson R (eds) Hydrocarbons in biotechnology. Heyden, London, pp 220–230

    Google Scholar 

  • Anthony C (1982) The biochemistry of methylotrophs. Academic Press, London

    Google Scholar 

  • Akaike H (1973) Information theory and extension of the maximum likelihood principle. In: Petrov BN, Csáki F (eds) Second International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, September 2–8, 1971, vol. 267–281. Akadémiai Kladó, Budapest

  • Billue F, Bell E (2012) The role of methionine residues in activity and subunit communication in malate dehydrogenase. FASEB J. 1(suppl):558.9

    Google Scholar 

  • Boden R (2017) Reclassification of Halothiobacillus hydrothermalis and Halothiobacillus halophilus to Guyparkeria gen. nov. in the Thioalkalibacteraceae fam. nov., with emended descriptions of the genus Halothiobacillus and family Halothiobacillaceae. Int J Syst Evol Microbiol 67:3919–3928

    CAS  PubMed  Google Scholar 

  • Boden R, Hutt LP (2018a) Chemolithoheterotrophy: means to higher growth yields from this widespread metabolic trait. In: Rojo F (ed) Aerobic utilization of hydrocarbons, oils and lipids (handbook of hydrocarbon and lipid microbiology). Springer, Switzerland

    Google Scholar 

  • Boden R, Hutt LP (2018b) Determination of kinetic parameters and metabolic modes using the chemostat. In: Steffan R (ed) Consequences of microbial interactions with hydrocarbons, oils and lipids (handbook of hydrocarbon and lipid microbiology). Springer, Switzerland

    Google Scholar 

  • Boden R, Hutt LP (2018c) Bacterial metabolism of C1 sulfur compounds. In: Rojo F (ed) Aerobic utilization of hydrocarbons, oils and lipids (Handbook of hydrocarbon and lipid microbiology). Springer, Switzerland

    Google Scholar 

  • Boden R, Murrell JC (2011) Response to mercury (II) ions in Methylococus capsulatus (Bath). FEMS Microbiol Lett 324:106–110

    CAS  PubMed  Google Scholar 

  • Boden R, Scott KM (2018) Evaluation of the genus Thiothrix Winogradsky 1888 (Approved Lists 1980) emend. Aruga et al. 2002: reclassification of Thiothrix disciformis to Thiolinea disciformis gen. nov., comb. nov., and of Thiothrix flexilis to Thiofilum flexile gen. nov., comb nov., with emended description of Thiothrix. Int J Syst Evol Microbiol 68:2226–2239

    CAS  PubMed  Google Scholar 

  • Boden R, Murrell JC, Schäfer H (2011) Dimethylsulfide is an energy source for the heterotrophic marine bacterium Sagittula stellata. FEMS Microbiol Lett 322:188–193

    CAS  PubMed  Google Scholar 

  • Boden R, Cleland D, Green PN, Katayama Y, Uchino Y, Murrell JC, Kelly DP (2012) Phylogenetic assessment of culture collection strains of Thiobacillus thioparus, and definitive 16S rRNA gene sequences for T. thioparus, T. denitrificans, and Halothiobacillus neapolitanus. Arch Microbiol 194:187–195

    CAS  PubMed  Google Scholar 

  • Boden R, Hutt LP, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy T, Ngan CT, Daum C, Shapiro N, Markowitz V, Ivanova N, Woyke T, Kyrpides N (3134T) Permanent draft genome of Thermithiobacillus tepidarius DSM 3134T, a moderately thermophilic, obligately chemolithoautotrophic member of the Acidithiobacillia. Stand Genomic Sci 11:74

    PubMed  PubMed Central  Google Scholar 

  • Boden R, Hutt LP, Rae A (2017) Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the ‘Proteobacteria’, and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol 67:1191–1205

    CAS  PubMed  Google Scholar 

  • Boden R, Kelly DP, Murrell JC, Schäfer H (2010) Oxidation of dimethylsulfide to tetrathionate by Methylophaga thiooxidans sp. nov., a new link in the sulfur cycle. Environ Microbiol 12:2688–2699

    CAS  PubMed  Google Scholar 

  • Bridger WA, Ramaley RF, Boyer PD (1969) Succinyl coenzyme A synthetase from Escherichia coli. Methods Enzymol 8:70–75

    Google Scholar 

  • Cook RA, Sanwal BD (1969) Isocitrate dehydrogenase (NAD-specific) from Neurospora crassa. Methods Enzymol 8:42–47

    Google Scholar 

  • Denkmann K, Grein F, Zigann R, Siemen A, Bergmann J, van Helmont S, Nicolai A, Pereira IAC, Dahl C (2012) Thiosulfate dehydrogenase: a widespread unusual acidophilic c-type cytochrome. Environ Microbiol 14:2673–2688

    CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fanbler B, Lowenstein JM (1969) Aconitase from pig heart. Methods Enzymol 8:26–30

    Google Scholar 

  • Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 33:999–1043

    CAS  PubMed  Google Scholar 

  • Gnaiger E (2001) Oxygen solubility in expermental media. OROBOROS Bioenerg Newslett 6:1–6

    Google Scholar 

  • Gommers PJF, Kuenen JG (1988) Thiobacillus strain Q, a chemolithoheterotrophic sulphur bacterium. Arch Microbiol 150:117–125

    CAS  Google Scholar 

  • Guittoneau G (1927) Sur l’oxydation microbienne du soufre au cours de l’ammonisation. Compt Rend Acad Sci 184:45–46

    Google Scholar 

  • Hill RL, Bradshaw RA (1969) Fumarase. Methods Enzymol 8:91–99

    Google Scholar 

  • Hiraishi A, Nagashima KVP, Matsuura K, Shimada K, Takaichi S, Wakao N, Katayama Y (1998) Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. Int J Syst Bacteriol 48:1389–1398

    CAS  PubMed  Google Scholar 

  • Hoare JP (1985) Oxygen. In: Bard AJ, Jordan J, Parsons R (eds) Standard potentials in aqueous solutions. CRC Press, Boca Raton

    Google Scholar 

  • Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76:297–307

    Google Scholar 

  • Hutt LP (2016) Taxonomy, physiology and biochemistry of the sulfur Bacteria. Ph.D Thesis, University of Plymouth

  • Hutt LP, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy T, Daum C, Shapiro N, Ivanova N, Kyrpides N, Woyke T, Boden R (2017) Permanent draft genome of Thiobacillus thioparus DSM 505T, an obligately chemolithoautotrophic member of the Betaproteobacteria. Stand Genomic Sci 12:10

    PubMed  PubMed Central  Google Scholar 

  • James MJ, Coulthurst SJ, Palmer T, Sargent F (2013) Signal peptide etiquette during assembly of a complex respiratory enzyme. Mol Microbiol 90:400–414

    CAS  PubMed  Google Scholar 

  • Kanagawa T, Dazai M, Fukuoka S (1982) Degradation of O, O-dimethyl phosphorothioate by Thiobacillus thioparus Tk-1 and Pseudomonas AK-2. Agric Biol Chem 46:2571–2575

    CAS  Google Scholar 

  • Karagouini A, Slater JH (1978) Growth of the blue green alga Anacystis nidulans during washout from light- and carbon dioxide-limited chemostats. FEMS Microbiol Lett 4:295–299

    Google Scholar 

  • Katayama Y, Hiraishi A, Kuraishi H (1995) Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 141:1469–1477

    CAS  PubMed  Google Scholar 

  • Kelly DP, Lu W-P, Poole RK (1993) Cytochromes in Thiobacillus tepidarius and the respiratory chain involved in the oxidation of thiosulphate and tetrathionate. Arch Microbiol 160:87–95

    CAS  Google Scholar 

  • Kelly DP (1971) Autotrophy: concepts of lithotrophic bacteria and their organic metabolism. Annu Rev Microbiol 25:177–210

    CAS  PubMed  Google Scholar 

  • Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Philos Trans R Soc Lond B Sci 298:499–528

    CAS  Google Scholar 

  • Kelly DP, Syrett PJ (1966) Energy coupling during sulphur compound oxidation by Thiobacillus sp. c. J Gen Microbiol 43:109–118

    CAS  PubMed  Google Scholar 

  • Kelly DP, Kuenen JG (1984) Ecology of the colourless sulphur bacteria. In: Codd GA (ed) Aspects of microbial metabolism and ecology. Academic Press, New York, pp 211–240

    Google Scholar 

  • Kelly DP, Wood AP (1994) Enzymes involved in the microbiological oxidation of thiosulfate and polythionates. Methods Enzymol 243:501–509

    CAS  Google Scholar 

  • Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516

    PubMed  Google Scholar 

  • Kelly DP, Chambers LA, Trudinger PA (1969) Cyanolysis and spectrophotometric estimation of trithionate in mixtures with thiosulphate and tetrathionate. Anal Chem 41:898–901

    CAS  Google Scholar 

  • Kelly DP, Lu W-P, Poole RK (1993) Cytochromes in Thiobacillus tepidarius and the respiratory chain involved in the oxidation of thiosulphate and tetrathionate. Arch Microbiol 160:87–95

    CAS  Google Scholar 

  • Kelly DP, McDonald IR, Wood AP (2000) Proposal for the reclassification of Thiobacillus novellus as Starkeya novella gen. nov., comb. nov., in the α-subclass of the Proteobacteria. Int J Syst Evol Microbiol 50:1797–1802

    CAS  PubMed  Google Scholar 

  • Kuenen JG, Beudeker RF (1982) Microbiology of Thiobacillus and other sulphur-oxidising autotrophs, mixotrophs and heterotrophs. Philos Trans R Soc Lond B Sci 298:473–497

    CAS  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurth JM, Dahl C, Butt JN (2015) Catalytic protein film electrochemistry provides a direct measure of the tetrathionate/thiosulfate reduction potential. J Am Chem Soc 41:13232–13235

    Google Scholar 

  • Kurth JM, Brito JA, Reuter J, Flegler A, Koch T, Franke T, Klein E, Rowe SF, Butt JN, Denkmann K, Pereira IAC, Archer M, Dahl C (2016) Electron accepting units of the diheme cytochrome c TsdA, a bifunctional thiosulfate dehydrogenase/tetrathionate reductase. J Biol Chem 291:24804–24818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    CAS  PubMed  Google Scholar 

  • Linton JD, Stephenson RJ (1978) A preliminary study on growth yields in relation to the carbon and energy content of various organic growth substrates. FEMS Microbiol Lett 3:95–98

    CAS  Google Scholar 

  • Lu WP, Kelly DP (1983) Thiosulfate oxidation, electron transport and phosphorylation in cell-free system from Thiobacillus A2. J Gen Microbiol 129:1661–1671

    CAS  Google Scholar 

  • Lu WP, Kelly DP (1988a) Cellular location and partial purification of the ‘thiosulphate-oxidizing enzyme’ and ‘trithionate hydrolyase’ from Thiobacillus tepidarius. J Gen Microbiol 134:877–885

    CAS  Google Scholar 

  • Lu WP, Kelly DP (1988b) Kinetic and energetic aspects of inorganic sulphur compound oxidation by Thiobacillus tepidarius. J Gen Microbiol 134:865–876

    CAS  Google Scholar 

  • Lyric RM, Suzuki I (1970) Enzymes involved in the metabolism of thiosulfate by Thiobacillus thioparus. III. Properties of thiosulfate-oxidising enzyme and proposed pathway of thiosulfate oxidation. Can J Biochem 48:355–363

    CAS  PubMed  Google Scholar 

  • Mason J, Kelly DP (1988) Thiosulfate oxidation by obligately heterotrophic Bacteria. Microb Ecol 15:123–134

    CAS  PubMed  Google Scholar 

  • Moreira D, Amils R (1997) Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli: proposal for Thiomonas gen. nov. Int J Syst Bacteriol 47:522–528

    CAS  PubMed  Google Scholar 

  • Murphey WH, Kitto GB (1969) Malate dehydrogenase from Escherichia coli. Methods Enzymol 8:145–148

    Google Scholar 

  • Pepper IL, Miller RH (1978) Comparison of the oxidation of thiosulfate and elemental sulphur by two heterotrophic bacteria and T. thiooxidans. Soil Sci 126:9–13

    CAS  Google Scholar 

  • Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc Roy Soc B 163:224–231

    CAS  Google Scholar 

  • Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell, Oxford

    Google Scholar 

  • Pirt SJ (1982) Maintenance energy: a general model for energy-limited and energy sufficient growth. Arch Microbiol 133:300–302

    CAS  PubMed  Google Scholar 

  • Podkopaeva DA, Grabovich MY, Dubinina GA (2005) The functional role of reduced inorganic sulfur compounds in the metabolism of the microaerophilic bacterium Spirillum winogradskii. Microbiology 74:12–19

    CAS  Google Scholar 

  • Quasem I, Achille AN, Caddick BA, Carter TA, Daniels C, Delaney JA, Delic V, Denton KA, Duran MC, Fatica MK, Ference CM, Galkiewicz JP, Garcia AM, Hendrick JD, Horton SA, Kun MS, Koch PW, Lee TM, McCabe CR, McHale S, McDaniel LD, Menning DM, Menning KJ, Mirzaei-Souderjani H, Mostajabian S, Nicholson DA, Nugent CK, Osman NP, Pappas DI, Rocha AM, Rosario K, Rubelmann H, Schwartz JA, Seeley KW, Staley CM, Wallace EM, Wong TM, Zielinski BL, Hanson TE, Scott KM (2017) Peculiar citric acid cycle of hydrothermal vent chemolithoautotroph Hydrogenovibrio crunogenus, and insights into carbon metabolism by obligate autotrophs. FEMS Microbiol Lett 364:148

    Google Scholar 

  • Reed LJ, Mukherjee BB (1969) α-ketoglutarate dehydrogenase complex from Escherichia coli. Methods Enzymol 8:55–62

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross PN (1985) Hydrogen. In: Bard AJ, Jordan J, Parsons R (eds) Standard potentials in aqueous solutions. CRC Press, Boca Raton

    Google Scholar 

  • Roy AB, Trudinger PA (1970) The biochemistry of inorganic compounds of sulphur. Cambridge University Press, Cambridge

    Google Scholar 

  • Schook LB, Berk RS (1978) Nutritional studies with P. aeruginosa grown on inorganic sulphur sources. J Bacteriol 133:1377–1382

    CAS  Google Scholar 

  • Schook LB, Berk RS (1979) Particial purification and characterization of thiosulfate oxidase from Pseudomonas aeruginosa. J Bacteriol 140:306–308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sijderius R (1946) Heterotrophe bacterien, die thiosulfaat oxydeeren. Ph.D Thesis, Vrije Universiteit Amsterdam

  • Sorokin DY, Teske A, Robertson LA, Kuenen JG (1999) Anaerobic oxidation of thiosulfate to tetrathionate by obligately heterotrophic bacteria, belonging to the Pseudomonas stutzeri group. FEMS Microbiol Ecol 30:113–123

    CAS  PubMed  Google Scholar 

  • Starkey RL (1934a) Isolation of some bacteria which oxidise thiosulfate. Soil Sci 39:197–219

    Google Scholar 

  • Starkey RL (1934b) The production of polythionates from thiosulfate by microorganisms. J Bacteriol 18:387–400

    Google Scholar 

  • Stouthamer AH (1979) The search for correlation between theoretical and experimental yields. In: Quayle JR (ed) International review of biochemistry, vol 21. University Park Press, Baltimore

    Google Scholar 

  • Suzuki K, Imahori K (1973) Isolation and some properties of glyceraldehyde-3-phosphate dehydrogenase from vegetative cells of Bacillus cereus. J Biochem 73:97–106

    CAS  PubMed  Google Scholar 

  • Szczepkowski TW (1958) Reactions of thiosulphate with cysteine. Nature 182:934–935

    CAS  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Ecol 10:512–526

    CAS  Google Scholar 

  • Trautwein K (1921) Beitrag zur Physiologie und Morphologie der Thionsaurebakterien (Omelianski). Zent Bakteriol Parasitenkd 53:513–548

    Google Scholar 

  • Trudinger PA (1961) Thiosulfate oxidation and cytochromes in Thiobacillus X: 1. Fractionation of bacterial extracts and properties of cytochromes. Biochem J 78:673–680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trudinger PA (1961b) Thiosulfate oxidation and cytochromes in Thiobacillus X: 2. Thiosulfate-oxidising enzyme. Biochem J 78:680–686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trudinger PA (1967) Metabolism of thiosulfate and tetrathionate by heterotrophic Bacteria from soil. J Bacteriol 93:550–559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuttle JH (1980) Organic carbon utilisation by resting cells of thiosulfate oxidising marine heterotrophs. Appl Environ Microbiol 40:516–521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuttle JH, Holmes PE, Jannasch HW (1974) Growth rate stimulation of marine pseudomonads by thiosulfate. Arch Microbiol 99:1–14

    CAS  PubMed  Google Scholar 

  • Tuovinen OH, Kelly DP (1973) Studies on the growth of Thiobacillus ferrooxidans. I. Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison with 14CO2-fixation and iron oxidation as measures of growth. Arch Microbiol 88:285–298

    Google Scholar 

  • VanDamme P, Moore ER, Cnockaert M, Peeters C, Svensson-Stadler L, Houf K, Spilker T, LiPuma JJ (2013) Classification of Achromobacter genogroups 2, 5, 7 and 14 as Achromobacter insuavis sp. nov., Achromobacter aegrifaciens sp. nov., Achromobacter anxifer sp. nov., and Achromobacter dolens sp. nov., respectively. Syst Appl Microbiol 36:474–482

    CAS  PubMed  Google Scholar 

  • Veeger C, DerVartanian DV, Zeylemaker WP (1969) Succinate dehydrogenase. Methods Enzymol 8:75–81

    Google Scholar 

  • Villarejo M, Westley J (1963) Rhodanese-catalysed reduction of thiosulfate by reduced lipoic acid. J Biol Chem 238:PC1185–PC1186

    Google Scholar 

  • Weitzman PDJ (1969) Citrate synthase from Escherichia coli. Methods Enzymol 8:22–26

    Google Scholar 

  • Whited GM, Tuttle JH (1983) Separation and distribution of thiosulfate-oxidising enzyme, tetrathionate reductase and thiosulfate reductase in extracts of marine heterotroph strain 16B. J Bacteriol 56:600–610

    Google Scholar 

  • Wood AP, Kelly DP (1993) Reclassification of Thiobacillus thyasiris as Thiomicrospira thyasirae comb. nov., an organism exhibiting pleomorphism in response to environmental conditions Arch. Microbiol 159:45–47

    CAS  Google Scholar 

  • Wood AP, Kelly DP, Thurston CF (1977) Simultanous operation of three catabolic pathways in the metabolism of glucose by Thiobacillus A2. Arch Microbiol 113:265–274

    CAS  PubMed  Google Scholar 

  • Zhdanov SI (1985) Sulfur, selenium, tellurium, and polonium. In: Bard AJ, Jordan J, Parsons R (eds) Standard potentials in aqueous solutions. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

The authors thank NCCB for the kind gift of strain NCCB 38021; Dr James Bray (University of Oxford) with assistance in having the associated genome sequence added to the public rMLST database, and Electrolab Biotech Ltd for the manufacture of the customised kinetic bioreactor for this work, funded by RG120444 (Royal Society).

Funding

The University of Plymouth provided a fully funded Ph.D studentship to LPH and the Royal Society (UK) provided Research Grant RG120444 to RB.

Author information

Authors and Affiliations

Authors

Contributions

RB and LPH conceived the study with contributions from AJM; LPH carried out most of the experimental work and data analyses with supervision and assistance from RB and AJM; RB conducted phylogenetic and genome-related analyses and all thermodynamic determinations; GMH prepared specimens and conducted electron microscopy with LPH; LPH and RB wrote the manuscript. All authors reviewed and contributed comments to the manuscript and agreed it for publication.

Corresponding author

Correspondence to Rich Boden.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicting or competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Availability of data and material

Genome sequence data for Achromobacter aegrifaciens NCCB 38021 are publically available in the IMG database under Genome ID 2,770,939,327. All raw data are available on request from the corresponding author. The strain A. aegrifaciens NCCB 38021 is publically available from culture collections under codes given in the Materials and Methods and Introduction.

Code availability

Not applicable.

Additional information

Communicated by Johann Heider.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutt, L.P., Harper, G.M., Moody, A.J. et al. Insights into growth kinetics and roles of enzymes of Krebs’ cycle and sulfur oxidation during exochemolithoheterotrophic growth of Achromobacter aegrifaciens NCCB 38021 on succinate with thiosulfate as the auxiliary electron donor. Arch Microbiol 203, 561–578 (2021). https://doi.org/10.1007/s00203-020-02028-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-02028-1

Keywords

Navigation