Skip to main content
Log in

Polite DNA: Functional density and functional compatibility in genomes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Certain as yet poorly defined functions of DNA appear to involve collectively domain-sized sequences. It is proposed that most sequence segments within a domain may be either functionally superfluous or instrumental, depending on how many related sequences are present in the domain. When redundant and functionally dispensable, such DNA segments presumably still have to conform to compositional or sequence-motif patterns that characterize the domain. In its relations with neighboring sequences, such DNA is required to be “polite.” Polite DNA is DNA that, without being crucially involved in function, is subject to constraints of conformity and, through its base composition, respects a function for which it is not required. This concept is developed by contrasting the distribution of specific and general functions over DNA with this distribution as found in proteins and by distinguishing functional compatibility from pivotal functionality. The sequence constraints to which heterochromatin as well as, apparently, long interspersed repetitive sequences are known to be subject seem to imply that DNA, even when it does not carry out a pivotal function, is indeed, at the very least, required to be polite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amenta PS, Gersh I, Gersh E (1973) Persistence of individuality of chromosomes during interphase, and the role of the nuclear membrane. In: Gersh I (ed) Submicroscopic cytochemistry. 1. Proteins and nucleic acids, vol 1. Academic Press, New York pp 365–375

    Google Scholar 

  • Barnard EA, Cohen MS, Gold MH, Kim, J-K (1972) Evolution of ribonuclease in relation to polypeptide folding mechanisms. Nature 240:395–398

    Article  PubMed  Google Scholar 

  • Barrie PA, Jeffreys AJ, Scott AF (1981) Evolution of the β-globin gene cluster in man and the primates. J Mol Biol 149: 319–336

    Article  PubMed  Google Scholar 

  • Bencze JL, Brasch K (1979) The morphology of normal and denatured polytene chromosomes fromDrosophila melanogaster. Cytobios 25:93–104

    PubMed  Google Scholar 

  • Benezra R, Cantor CR, Axel R (1986) Nucleosomes are phased along the mouse β-major globin gene in erythroid and nonerythroid cells. Cell 44:697–704

    Article  PubMed  Google Scholar 

  • Benyajati C, Worcel A (1976) Isolation, characterization, and structure of the folded interphase genome ofDrosophila melanogaster. Cell 9:393–407

    Article  PubMed  Google Scholar 

  • Bernardi G, Bernardi G (1985) Codon usage and genome composition. J Mol Evol 22:363–365

    Google Scholar 

  • Bernardi G, Bernardi G (1986) Compositional constraints and genome evolution. J Mol Evol 24:1–11

    PubMed  Google Scholar 

  • Bernardi G, Bernardi G (1987) The human genome and its evolutionary context. Cold Spring Harbor Symp Quant Biol “1986” (in press)

  • Bernardi G Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, Rodier F (1985) The mosaic genome of warm-blooded vertebrates. Science 228:953–958

    Google Scholar 

  • Beyer AL, Miller OL Jr, McKnight SL (1980) Ribonucleoprotein structure in nascent hnRNA is nonrandom and sequence-dependent. Cell 20:75–84

    Article  PubMed  Google Scholar 

  • Blaisdell BE (1983) Choice of base at silent codon site 3 is not selective neutral in eucaryotic structural genes: It maintains excess short runs of weak and strong hydrogen bonding bases. J Mol Evol 19:226–236

    PubMed  Google Scholar 

  • Blaisdell BE (1985) Markov chain analysis finds a significant influence of neighboring bases on the occurrence of a base in eucaryotic nuclear DNA sequences both protein-coding and noncoding. J Mol Evol 21:278–288

    Google Scholar 

  • Blumenfeld M, Orf JW, Sina BJ, Kreber RA Callahan, MA, Snyder LA (1978) Satellite DNA, H1 histone and heterochromatin inDrosophila virilis. Cold Spring Harbor Symp Quant Biol “1977” 42:273–275

    Google Scholar 

  • Brutlag DL (1980) Molecular arrangement and evolution of heterochromatic DNA. Ann Rev Genet 14:121–144

    Article  PubMed  Google Scholar 

  • Callan HG (1967) The organization of genetic units in chromosomes. J Cell Sci 2:1–7

    PubMed  Google Scholar 

  • Callan HG (1981) Lampbrush chromosomes. Proc Roy Soc Lond B214:417–448

    Google Scholar 

  • Cavalier-Smith T (1978) Nuclear volume by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA c-value paradox. J Cell Sci 34:247–278

    PubMed  Google Scholar 

  • Cavalier-Smith T (1985) Cell volume and the evolution of eukaryotic genome size. In: Cavalier-Smith T (ed) The evolution of genome size. John Wiley & Sons New York, pp 105–184

    Google Scholar 

  • Cockerill PN, Garrard WT (1986) Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell 44:273–282

    Article  PubMed  Google Scholar 

  • Cook PR, Brazell IA (1975) Supercoils in human DNA. J Cell Sci 19:261–279

    PubMed  Google Scholar 

  • Cooper GM, Goubin G, Diamond A, Neiman P (1986) Relationship ofBlym genes to repeated sequences. Nature 320: 579–580

    Article  PubMed  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  PubMed  Google Scholar 

  • Dover G (1980) Ignorant DNA? Nature 285:618–620

    Article  PubMed  Google Scholar 

  • Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117

    Article  PubMed  Google Scholar 

  • Economidis I, Pederson T (1983) In vitro assembly of a premessenger ribonucleoprotein. Proc Natl Acad Sci USA 80: 4296–4300

    PubMed  Google Scholar 

  • Fry K, Salser W (1977) Nucleotide sequences of HS-α satellite DNA from kangaroo ratDipodomys ordii and characterization of similar sequences in other rodents. Cell 12:1069–1084

    PubMed  Google Scholar 

  • Gall JG (1963) Chromosomes and cytodifferentiation. In: Locke M (ed) Cytodifferentiation and macromolecular synthesis. Academic Press, New York, pp 119–143

    Google Scholar 

  • Georgiev GP, Nedospasov SA, Bakayev VV (1978) Supranucleosomal levels of chromatin organization. In: Busch H (ed) The cell nucleus, vol 6. Academic Press, New York, pp 1–34

    Google Scholar 

  • Goldberg GI, Collier I, Cassel A (1983) Specific DNA sequences associated with the nuclear matrix in synchronized mouse 3T3 cells. Proc Natl Acad Sci USA 80:6887–6891

    PubMed  Google Scholar 

  • Grantham R, Gautier C, Gouy M (1980) Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. Nucleic Acids Res 8:1893–1912

    PubMed  Google Scholar 

  • Groudine M, Weintraub H (1982) Propagation of globin DNAase I-hypersensitive sites in absence of factors required for induction: a possible mechanism for determination. Cell 30: 131–139

    Article  PubMed  Google Scholar 

  • Groudine M, Peretz M, Weintraub H (1981) The structure and expression of globin chromatin during hematopoiesis in the chicken embryo. In: Stamatoyannopoulos G, Nienhuis AW (eds) Organization and expression of globin genes. Alan R. Liss, New York, pp 163–173

    Google Scholar 

  • Hagerman PJ (1986) Sequence-directed curvature of DNA. Nature 321:449–450

    Article  PubMed  Google Scholar 

  • Hancock R, Boulikas T (1982) Functional organization in the nucleus. In: International review of cytology, vol 79. Academic Press, New York, pp 165–215

    Google Scholar 

  • Hilliker AJ, Appels R (1980) The genetic analysis ofD. melanogaster heterochromatin. Cell 21:607–619

    PubMed  Google Scholar 

  • Holmquist GP, Dancis B (1979) Telomere replication, kinetochore organizers, and satellite DNA evolution. Proc Natl Acad Sci USA 76:4566–4570

    PubMed  Google Scholar 

  • Hutchison N, Weintraub H (1985) Localization of DNAse I-sensitive sequences to specific regions of interphase nuclei. Cell 43:471–482

    Article  PubMed  Google Scholar 

  • Ide T, Nakane M, Anzai K, Andoh T (1975) Supercoiled DNA folded by non-histone proteins in cultured mammalian cells. Nature 258:445–447

    Article  PubMed  Google Scholar 

  • Igo-Kemenes T, Zachau HG (1978) Domains in chromatin structure. Cold Spring Harbor Symp Quant Biol 1977 42: 109–118

    Google Scholar 

  • Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34

    PubMed  Google Scholar 

  • Isackson PJ, Cox DJ, Manning D, Reeck GR (1985) Studies on the interactions of HMG-1 and its homologs with DNA. In: Beckhor I (ed) Progress in nonhistone protein research, II. CRC Press, Boca Raton, Florida, pp 23–39

    Google Scholar 

  • Jeffreys AJ (1982) Evolution of globin genes. In: Dover GA, Flavell RB (eds) Genome evolution. Academic Press, New York, pp 157–175

    Google Scholar 

  • Jukes TH (1978) Codons and nearest-neighbor nucleotide pairs in mammalian messenger RNA. J Mol Evol 11:121–127

    Article  PubMed  Google Scholar 

  • Keene MA, Elgin SCR (1984) Patterns of DNA structural polymorphism and their evolutionary implications. Cell 36:121–129

    Article  PubMed  Google Scholar 

  • Keppel F, Allet B, Eisen H (1977) Appearance of a chromatin protein during the erythroid differentiation of Friend virus-transformed cells. Proc Natl Acad Sci USA 74:653–656

    PubMed  Google Scholar 

  • Keyl HG (1965) Duplikationen von Untereinheiten des chromosomalen DNS während der Evolution vonChironomus thummi. Chromosoma 17:139–180

    Article  PubMed  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge, Massachusetts

    Google Scholar 

  • Koepsel RR, Kahn SA (1986) Static and initiator protein-enhanced bending of DNA at a replication origin. Science 233: 1316–1318

    PubMed  Google Scholar 

  • Kornberg R (1981) The location of nucleosomes in chromatin: specific or statistical? Nature 292:579–580

    PubMed  Google Scholar 

  • Kroeger H, Müller G (1973) Control of puffing activity in three chromosomal segments of explanted salivary gland cells ofChironomus thummi by variation in extracellular Na+, K+, and Mg2+. Exp Cell Res 82:89–94

    PubMed  Google Scholar 

  • Lacroix JC, Azzouz R, Boucher D, Abbadie C, Pyne CK, Charlemagne J (1985) Monoclonal antibodies to lampbrush chromosome antigens ofPleurodeles waltlii. Chromosoma 92:69–80

    Article  PubMed  Google Scholar 

  • Laimins L, Holmgren-Konig M, Khoury G (1986) Transcriptional “silencer” element in rat repetitive sequences associated with the rat insulin 1 gene locus. Proc Natl Acad Sci USA 83:3151–3155

    PubMed  Google Scholar 

  • Larsen A, Weintraub H (1982) An altered DNA conformation detected by S1 nuclease occurs at specific regions in active chick globin chromatin. Cell 29:609–622

    Article  PubMed  Google Scholar 

  • Lawson GM, Knoll BJ, March CJ, Woo SLC, Tsai M-J, O'Malley BW (1982) Definition of 5′ and 3′ structural boundaries of the chromatin domain containing the ovalbumin multigene family. J Biol Chem 257:1501–1507

    PubMed  Google Scholar 

  • Lebkowski JS, Laemmli UK (1982) Non-histone proteins and long-range organization of HeLa interphase DNA. J Mol Biol 156:325–344

    Article  PubMed  Google Scholar 

  • Lengyel J, Penman S (1975) RNA size and processing as related to different DNA content of two Dipterans:Drosophila andAedes. Cell 5:281–290

    Article  PubMed  Google Scholar 

  • Lewis DC, Lebkowski JS, Daly AK, Laemmli UK (1984) Interphase nuclear matrix and metaphase scaffolding structures. J Cell Sci Suppl 1:103–122

    Google Scholar 

  • Lewin R (1981) Do jumping genes make evolutionary leaps? Science 213:634–636

    PubMed  Google Scholar 

  • Lezzi M, Robert M (1972) Chromosomes isolated from unfixed salivary glands ofChironomus. In: Beermann W (ed) Developmental studies on giant chromosomes. Springer-Verlag, New York, pp 35–57

    Google Scholar 

  • Li W-H, Gojobori T, Nei M (1981) Pseudogenes as a paradigm of neutral evolution. Nature Lond 292:237–239

    Article  PubMed  Google Scholar 

  • MacGregor HC (1980) Recent developments in the study of lampbrush chromosomes. Heredity 44:3–35

    Google Scholar 

  • Madhani HD, Bohr VA, Hanawalt PC (1986) Differential DNA repair in transcriptionally active and inactive proto-oncogenes: c-abl and c-mos. Cell 45:417–423

    Article  PubMed  Google Scholar 

  • Mardian JKW, Paton AE, Bunick GJ, Olins DE (1980) Nucleosome cores have two specific binding sites for nonhistone chromosomal proteins HMG 14 and HMG 17. Science 209: 1534–1536

    PubMed  Google Scholar 

  • Marsden MPF, Laemmli UK (1979) Metaphase chromosome structure: evidence for a radial loop model. Cell 17:849–858

    Article  PubMed  Google Scholar 

  • Martin G, Wiernasz D, Schedl P (1983) Evolution ofDrosophila repetitive-dispersed DNA. J Mol Evol 19:203–213

    PubMed  Google Scholar 

  • Maynard Smith S (1968) “Haldane's Dilemma” and the rate of evolution. Nature 219:1114–1116

    PubMed  Google Scholar 

  • Meunier-Rotival M, Soriano P, Cuny G, Strauss F, Bernardi G (1982) Sequence organization and genomic distribution of the major family of interspersed repeats of mouse DNA. Proc Natl Acad Sci USA 79:355–359

    PubMed  Google Scholar 

  • Miklos GLG (1985) Localized highly repetitive DNA sequences in vertebrate and in vertebrate genomes. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum Press, New York, pp 241–321

    Google Scholar 

  • Miklos GLG, Gill AC (1981) The DNA sequences of cloned complex satellite DNAs from HawaiianDrosophila and their bearing on satellite DNA sequence conservation. Chromosoma 82:409–427

    Article  PubMed  Google Scholar 

  • Miyata T, Yasunaga T (1981) Rapidly evolving mouse α-globin-related pseudogene and its evolutionary history. Proc Natl Acad Sci USA 78:450–453

    PubMed  Google Scholar 

  • Moreau J, Marcaud L, Maschat F, Kejzlarova-Lepesant J, Lepesant J-A, Scherrer K (1982) A+T-rich linkers define functional domains in eukaryotic DNA. Nature 295:260–262

    Article  PubMed  Google Scholar 

  • Musich PR, Brown FL, Maio JJ (1977) Subunit structure of chromatin and the organization of eukaryotic highly repetitive DNA: nucleosomal proteins associated with a highly repetitive mammalian DNA. Proc Natl Acad Sci USA 74:3297–3301

    PubMed  Google Scholar 

  • Musich PR, Brown FL, Maio JJ (1978) Mammalian repetitive DNA and the subunit structure of chromatin. In: Symposia on quantitative biology 1977, vol 42(2). Cold Spring Harbor Laboratory, pp 1147–1160

  • Myers RM, Tilly K, Maniatis T (1986) Fine structure genetic analysis of a β-globin promoter. Science 232:613–618

    PubMed  Google Scholar 

  • Ohno S (1972) So much “junk” data in our genome. In: Smith HH (ed) Evolution of genetic systems. Gordon-Breach, New York, pp 366–370

    Google Scholar 

  • Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    Article  PubMed  Google Scholar 

  • Paulson JR, Laemmli UK (1977) The structure of histone-depleted metaphase chromosomes. Cell 12:817–828

    Article  PubMed  Google Scholar 

  • Prunell A, Kornberg RD (1978) Relation of nucleosomes to DNA sequences. In: Symposia on quantitative biology 1977, vol 42 (1). Cold Spring Harbor Laboratory, pp 103–108

  • Razin SV, Mantieva VL, Georgiev GP (1979) The similarity of DNA sequences remaining bound to scaffold upon nuclease treatment of interphase nuclei and metaphase chromosomes. Nucleic Acids Res 7:1713–1735

    PubMed  Google Scholar 

  • Renz M, Nehls P, Hozier J (1978) Histone H1 involvement in the structure of the chromosome fiber. Cold Spring Harbor Symp Quant Biol 1977 42:245–252

    Google Scholar 

  • Risau W, Symmons P, Saumweber H, Frasch M (1983) Nonpackaging and packaging proteins of hnRNA inDrosophila melanogaster. Cell 33:529–541

    Article  PubMed  Google Scholar 

  • Rogers J (1986) Relationship ofBlym genes to repeated sequences. Nature 320:579

    Article  PubMed  Google Scholar 

  • Ruiz-Carrillo A, Puigdomenech P, Eder G, Lurz R (1980) Stability and reversibility of higher order structure of interphase chromatin: Continuity of deoxyribonucleic acid is not required for maintenance of folded structure. Biochemistry 19: 2544–2554

    Article  PubMed  Google Scholar 

  • Schaufele F, Gilmartin GM, Bannwarth W, Bernstiel ML (1986) Compensatory mutations suggest that base-pairing with a small nuclear RNA is required to form the 3′ end of H3 messenger RNA. Nature 323:777–781

    Article  PubMed  Google Scholar 

  • Scheer U, Sommerville J (1982) Sizes of chromosome loops and hnRNA molecules in oocytes of amphibia of different genome sizes. Exp Cell Res 139:410–416

    Article  PubMed  Google Scholar 

  • Scheer U, Franke WW, Trendelenburg MF, Spring H (1976) Classification of loops of lampbrush chromosomes according to the arrangement of transcriptional complexes. J Cell Sci 22:503–519

    PubMed  Google Scholar 

  • Schlissel MS, Brown DD (1984) The transcriptional regulation of Xenopus 5S RNA genes in chromatin: the roles of active stable transcription complexes and histone H1. Cell 37:903–913

    Article  PubMed  Google Scholar 

  • Schmid CW, Shen C-KJ (1985) The evolution of interspersed repetitive DNA sequences in mammals and other vertebrates. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum Press, New York, pp 323–358

    Google Scholar 

  • Sedat J (1978) A direct approach to the structure of eukaryotic chromosomes. Cold Spring Harbor Symp Quant Biol “1977” 42:331–350

    Google Scholar 

  • Serfling E, Jasin M, Schaffner W (1985) Enhancers and eukaryotic gene transcription. Trends in Genetics 1:224–230

    Article  Google Scholar 

  • Simon JA, Sutton CA, Lobell RB, Glaser RL, Lis JT (1985) Determinants of heat shock-induced chromosome puffing. Cell 40:805–817

    Article  PubMed  Google Scholar 

  • Singer MF (1982) SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell 28: 433–434

    Article  PubMed  Google Scholar 

  • Sommerville J (1981) Immunologicalization and structural organization of nascent RNP. In: The cell nucleus, vol VIII. Academic Press, New York, pp 1–57

    Google Scholar 

  • Sommerville J, Crichton C, Malcolm D (1978) Immunofluorescent localization of transcriptional activity on lampbrush chromosomes. Chromosoma 66:99–114

    Article  Google Scholar 

  • Sorsa V, Sorsa M (1970) Ultrastructure of induced transitions in the chromatin organization ofDrosophila polytene chromosomes. Chromosoma 31:346–355

    Article  PubMed  Google Scholar 

  • Spring H, Franke WW (1981) Transcriptionally active chromatin in loops of lampbrush chromosomes at physiological salt concentrations as revealed by electron microscopy of sections. Eur J Cell Biol 24:298–308

    PubMed  Google Scholar 

  • Stalder J, Larsen A, Engel JD, Dolan M, Groudine M, Weintraub H (1980) Tissue-specific DNA cleavages in the globin chromatin domain introduced by DNAase I. Cell 20:451–460

    Article  PubMed  Google Scholar 

  • Strauss F, Varshavsky A (1984) A protein binds to a satellite DNA repeat at three specific sites that would be brought into mutual proximity by DNA folding in the nucleosome. Cell 37:889–901

    Article  PubMed  Google Scholar 

  • Tautz D, Trick M, Dover GA (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322:652–656

    Article  PubMed  Google Scholar 

  • Thoma F, Koller Th (1977) Influence of histone H1 on chromatin structure. Cell 12:101–107

    Article  PubMed  Google Scholar 

  • Udvardy A, Schedl P (1983) Structural polymorphism in DNA. J Mol Biol 166:159–181

    PubMed  Google Scholar 

  • Udvardy A, Schedl P, Sander M, Hsieh T-S (1985) Novel partitioning of DNA cleavage sites forDrosophila topoisomerase II. Cell 40:933–941

    Article  PubMed  Google Scholar 

  • Vanin EF, Goldberg GI, Tucker PW, Smithies O (1980) A mouse α-globin-related pseudogene lacking intervening sequences. Nature 286:222–226

    Article  PubMed  Google Scholar 

  • Weintraub H (1983) A dominant role for DNA secondary structure in forming hypersensitive structures in chromatin. Cell 32:1191–1203

    Article  PubMed  Google Scholar 

  • Weintraub H (1985) Assembly and propagation of repressed and derepressed chromosomal states. Cell 42:705–711

    Article  PubMed  Google Scholar 

  • Weisbrod S (1982) Active chromatin. Nature 297:289–295

    Article  PubMed  Google Scholar 

  • Zehnbauer BA, Vogelstein B (1985) Supercoiled loops and the organization of replication and transcription in eukaryotes. BioEssays 2:52–54

    Article  Google Scholar 

  • Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson AC (1980) Rapid duplication and loss of genes coding for the α chains of hemoglobin. Proc Natl Acad Sci USA 77:2158–2162

    PubMed  Google Scholar 

  • Zuckerkandl E (1965) Remarques sur l'évolution des polynucléotides comparée à celle des polypeptides. Bull Soc Chim Biol 47:1729–1730

    PubMed  Google Scholar 

  • Zuckerkandl E (1974) A possible role of “inert” heterochromatin in cell differentiation. Biochimie 56:937–954

    PubMed  Google Scholar 

  • Zuckerkandl E (1975) The appearance of new structures and functions in proteins during evolution. J Mol Evol 7:1–57

    Article  PubMed  Google Scholar 

  • Zuckerkandl E (1976a) Evolutionary processes and evolutionary noise at the molecular level. I. Functional density in proteins. J Mol Evol 7:167–183

    Article  PubMed  Google Scholar 

  • Zuckerkandl E (1976b) Gene control in eukaryotes and the c-value paradox. J Mol Evol 9:73–104

    Article  PubMed  Google Scholar 

  • Zuckerkandl E (1981) A general function of noncoding polynucleotide sequences. Molec Biol Rep 7:149–158

    Article  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuckerkandl, E. Polite DNA: Functional density and functional compatibility in genomes. J Mol Evol 24, 12–27 (1986). https://doi.org/10.1007/BF02099947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099947

Key words

Navigation