Skip to main content
Log in

The appearance of new structures and functions in proteins during evolution

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The likelihood of a de novo generation of classes of efficient proteins through neoformation of DNA, through modification of expressed DNA, and through modification of nonexpressed DNA is examined. So is the likelihood that newly formed inefficient enzymes be turned into efficient enzymes. The conclusions are that neither gene duplicates nor dormant genes represent promising materials for a de novo generation of protein classes, that (with exceptions) such generation is unlikely to have taken place in recent evolution, that new structural genes must nearly consistently derive from preexisting structural genes, and that new functions can be evolved only on the basis of old proteins. Conditions of protein evolution in prokaryotes suggest that the saltatory formation of protein classes is as unlikely in prokaryotes as in eukaryotes. Data on the history of a few protein classes are reviewed to illustrate the preceding inferences. The analysis leads to the hypothesis that most protein classes originated before the major elements of the translation apparatus of modern cells were fully evolved. If simple sequence DNA is turned into structural genes by evolution, this process (again with exceptions) is considered to have taken place only at that very remote period. A polyphyletic origin of proteins is thought to date back to the same era. It is proposed that the development of genic multiplicity and of marked structural and functional diversity of proteins may have come about in the earliest cells primarily through the independent generation of structurally different polymerases in different protocells, followed by cell conjugation and the subsequent use by enriched cells of supernumerary types of polymerase for evolving further functions. Functional growth, as it took place at early times, is briefly discussed as well as functional change. The foundations for new functional developments in old proteins are analyzed. In considering the evolutionary recovery of lost functions, aspects of cell differentiation and gene regulation are linked with the evolutionary picture. The distinction between eurygenic and stenogenic control of gene activity is used. Next to gene deletion, cell and tissue deletion is held to be an event of general evolutionary significance, through cell and tissue origination that presumably accompanies the restoration of a lost molecular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleby, C.A. (1969). Biochim.Biophys.Acta 172, 88

    Google Scholar 

  • August, J.T., Eoyang, L., Franze de Fernandez, M.T., Hayward, W.S., Kuo, C.H., Silverman, P.M. (1972). In: International Symposium on Protein Synthesis and Nucleic Acids, Proc.XI Latin Am.Symp., La Plata 1971. New York: Plenus Press

    Google Scholar 

  • Barker, W.C., McLaughlin, P.J., Dayhoff, M.O. (1972). Evolution of a complex system. In: Atlas of protein sequence and structure, Vol. 5, M.O. Dayhoff, ed., p. 31. Washington, D.C.: National Biomedical Research Foundation

    Google Scholar 

  • Barnard, E.A., Cohen, M.S., Gold, M.H., Kim, J.-K. (1972). Nature 240, 395

    Google Scholar 

  • Bendich, A.J., McCarthy, B.J. (1970). Proc.Natl.Acad.Sci. 65, 349

    Google Scholar 

  • Benvenista, R., Davies, J. (1973). Ann.Rev.Biochem. 42, 471

    Google Scholar 

  • Birnstiel, M.L., Weinberg, E.S., Pardue, M.L. (1973). In: Molecular cytogenetics, B.A. Hamkalo, J. Papaconstantinou, eds., p. 75. New York: Plenum Press

    Google Scholar 

  • Bishop, J.O., Freeman, K.B. (1973). Cold Spring Harbor Symp.Quant.Biol. 38, 707

    Google Scholar 

  • Bishop, J.O., Morton, J.C., Rosbash, M., Richardson, M. (1974). Nature 250, 199

    Google Scholar 

  • Britten, R.J., Davidson, E.H. (1969). Science 165, 349

    Google Scholar 

  • Britten, R.J., Kohne, D.E. (1968). Science 161, 529

    Google Scholar 

  • Broda, E. (1971). Bioenergetic evolution. In: Biochemical evolution and the origin of life, E. Schoffeniels, ed., p. 224. Amsterdam: North Holland

    Google Scholar 

  • Brown, A.K., Wilmore, P.J. (1974). Chromosoma 47, 379

    Google Scholar 

  • Campbell, J.H., Lengyel, J.A., Langridge, J. (1973). Proc.Natl.Acad.Sci. 70, 1841

    Google Scholar 

  • Cantor, C.R., Jukes, T.H. (1966). Proc.Natl.Acad.Sci. 56, 177

    Google Scholar 

  • Capon, B. (1964). Quart.Revs. 18, 45

    Google Scholar 

  • Cavadore, J.C. (1971). Polycondensation d'α-amino acides en milieu aqueux. Thèse doctorat ès sciences physiques, Université des Sciences et Techniques du Languedoc, Montpellier

  • Cavadore, J.C., Previero, A. (1969). Bull.Soc.Chim.Biol. 51, 1245

    Google Scholar 

  • Coletti-Previero, M.A., Previero, A., Zuckerkandl, E. (1969). J.Mol.Biol. 39, 493

    Google Scholar 

  • Colman, P.M., Jansonius, J.N., Matthews, B.W. (1972). J.Mol.Biol. 70, 701

    Google Scholar 

  • Corbin, K.W., Uzzell, T. (1970). Am.Nat. 104, 37

    Google Scholar 

  • Davidson, E.H., Britten, R.J. (1973). Quart.Revs.Biol. 48, 565

    Google Scholar 

  • Davidson, E.H., Hough, B.R. (1971). J.Mol.Biol. 56, 491

    Google Scholar 

  • Dayhoff, M.O. (1972). Atlas of protein sequence and structure, Vol. 5. Washington, D.C.: National Biomedical Research Foundation

    Google Scholar 

  • Dayhoff, M.O. (1974). Fed.Proc. 33, 2314

    Google Scholar 

  • Dickerson, R.E. (1971). J.Mol.Biol. 57, 1

    Google Scholar 

  • Eck, R.V., Dayhoff, M.O. (1966). Science 152, 363

    Google Scholar 

  • Epstein, C.J. (1964). Nature 203, 1350

    Google Scholar 

  • Farquhar, M.N., McCarthy, B.J. (1973). Biochem. 12, 4113

    Google Scholar 

  • Faye, G., Fukuhara, H., Grandchamp, C., Lazowska, J., Michel, F., Casey, J., Getz, G.S., Locker, J., Rabinowitz, M., Balotin-Fukuhara, M., Coen, D., Deutsch, J., Dujou, B., Netter, P., Slonimski, P.P. (1973). Biochim. 55, 779

    Google Scholar 

  • Fitch, W.M. (1970a). System.Zool. 19, 99

    Google Scholar 

  • Fitch, W.M. (1970b). J.Mol.Biol. 49, 15

    Google Scholar 

  • Fox, S.W. (1973). Naturwiss. 60, 359

    Google Scholar 

  • Fox, S.W., McCauley, R.J., Wood, A. (1967). Comp.Biochem.Physiol. 20, 773

    Google Scholar 

  • Galau, G.A., Britten, R.J., Davidson, E.H. (1974). Cell 2, 9

    Google Scholar 

  • Gall, J.G., Cohen, E.H., Polan, M.L. (1971). Chromosoma 33, 319

    Google Scholar 

  • Gatlin, L.L. (1974). J.Mol.Evol. 3, 189

    Google Scholar 

  • Goodman, M. (1961). Human Biol. 33, 131

    Google Scholar 

  • Goodman, M. (1964). The specificity of proteins and the process of primate evolution. In: Protides of the biological fluids, H. Peeters, ed., p.70. Amsterdam: Elsevier

    Google Scholar 

  • Goldberg, R.B., Galau, G.A., Britten, R.J., Davidson, E.H. (1973). Proc.Natl.Acad.Sci. 70, 3516

    Google Scholar 

  • Goldfine, H. (1972). Advan.Microbiol.Physiol. 8, 1

    Google Scholar 

  • Greenberg, J.R., Perry, R.P. (1971). J.Cell Biol. 50, 774

    Google Scholar 

  • Grey, H.M. (1971). Phylogeny of immunoglobulins. In: Biochemical evolution and the origin of life, E. Schoffeniels, ed., p.96. Amsterdam: North Holland

    Google Scholar 

  • Grigliatti, T.A., White, B.N., Tener, G.M., Kaufman, T.C., Holden, J.J., Suzuki, D.T. (1973). Cold Spring Harbor Symp.Quant.Biol. 38, 461

    Google Scholar 

  • Hartley, B.S., Burleigh, B.D., Midwinter, C.G., Moore, C.H., Morris, H.R., Rigby, P.W.J., Smith, M.J., Taylor, S.S. (1972). Proc.FEBS Meetings 29, 151

    Google Scholar 

  • Hennig, W., Hennig, I., Stein, H. (1970). Chromosoma 32, 31

    Google Scholar 

  • Horowitz, N.H. (1965). The evolution of biochemical syntheses -retrospect and prospect. In: Evolving genes and proteins, V. Bryson, H.J. Vogel, eds., p. 15. New York: Academic Press

    Google Scholar 

  • Ingram, V.M. (1961). Nature 189, 704

    Google Scholar 

  • Jeuniaux, Ch. (1971). On some biochemical aspects of regressive evolution in animals. In: Biochemical evolution and the origin of life, E.Schoffeniels, ed., p. 304. Amsterdam: North Holland

    Google Scholar 

  • Kedes, L., Birnstiel, M.L. (1971). Nature New Biol. 230, 165

    Google Scholar 

  • Kimura, M. (1968). Genet.Res. 11, 247

    Google Scholar 

  • King, J.L. (1972). The role of mutation in evolution. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 5, p. 69. Berkeley: University of California Press

    Google Scholar 

  • King, J.L., Jukes, T.H. (1969). Science 164, 788

    Google Scholar 

  • Klippenstein, G.L. (1972). Biochem. 11, 372

    Google Scholar 

  • Koch, H.J.A., Bergström, E., Evans, J.C. (1964). Mededel.Koninkl. Vlaamse Acad.Wetenschap.Belg. 26, 1

    Google Scholar 

  • Koch, A.I. (1972). Genetics 72, 297

    Google Scholar 

  • Kohne, D.E. (1970). Quart.Revs.Biophys. 3, 327

    Google Scholar 

  • Laird, C.D., McConaughy, B.L., McCarthy, B.J. (1969). Nature 224, 149

    Google Scholar 

  • Lee, C.C., Thomas, C.A.,Jr. (1973). J.Mol.Biol. 77, 25

    Google Scholar 

  • Lewis, E.B. (1951). Cold Spring Harbor Symp.Quant.Biol. 16, 159

    Google Scholar 

  • Lucas, F., Rudall, K.M. (1968). In: Comprehensive biochemistry, M. Florkin, E.H. Stotz, eds., Vol. 26, part B, p. 475. Amsterdam: Elsevier

    Google Scholar 

  • Lwoff, A. (1943). L'Evolution physiologique. Etude des pertes de fonctions chez les microorganismes. Paris: Hermann

    Google Scholar 

  • Maden, B.E.H. (1971). Progr.Biophys.Mol.Biol. 22, 129

    Google Scholar 

  • Manwell, C., Baker, C.M.A. (1970). Molecular biology and the origin of species. London: Sidgwick and Jackson

    Google Scholar 

  • Margoliash, E., Fitch, W.M. (1970). Miami Winter Symp. 1, 33. Amsterdam: North Holland

    Google Scholar 

  • Margulis, L. (1970). Origin of eukaryotic cells. New Haven: Yale University Press

    Google Scholar 

  • Markland, F.S., Smith, E.L. (1967). J.Biol.Chem. 242, 5198

    Google Scholar 

  • Martin, F. (1974). Etude de l'hémoglobine d'un Sélacien,Scylliorhinus canicula. Thèse de doctorat ès-sciences physiques, Université des Sciences et Techniques du Languedoc, Montpellier

  • Matsubara, H., Jukes, T.H., Cantor, C.R. (1969). Brookhaven Symp.Biol. 21, 201

    Google Scholar 

  • McCarthy, B.J., Nishiura, J.T., Doenecke, D., Nasser, D.S., Johnson, C.B. (1973). Cold Spring Harbor Symp.Quant.Biol. 38, 763

    Google Scholar 

  • McLachlan, A.D., Shotton, D.M. (1971). Nature New Biol. 229, 202

    Google Scholar 

  • McLaughlin, P.J., Dayhoff, M.O. (1973). J.Mol.Evol. 2, 99

    Google Scholar 

  • Medvedev, Z.A. (1972). J.Mol.Evol. 1, 270

    Google Scholar 

  • Metz, C.W. (1947). Am.Nat. 81, 81

    Google Scholar 

  • Miller, O.L., Hamkalo, B.A. (1972).

  • Monod, J. (1971). Chance and necessity. New York: Knopf

    Google Scholar 

  • Neurath, H., Bradshaw, R.A., Arnon, R. (1970). Homology and phylogeny of proteolytic enzymes. In: Structure-function relationships of proteolytic enzymes, P. Desnuelle, H. Neurath, M. Ottesen, eds., p. 113. Copenhagen: Munksgaard

    Google Scholar 

  • Ohno, S. (1970). Evolution by gene duplication. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Ohta, T., Kimura, M. (1971). Nature 233, 118

    Google Scholar 

  • Pauling, L., Zuckerkandl, E. (1963). Acta Chem.Scand. 17, S9

    Google Scholar 

  • Pauling, L., Zuckerkandl, E. (1972). Chance in evolution - some philosophical remarks. In: Molecular evolution, D.L. Rohlfing, A.I. Oparin, eds., p. 113. New York: Plenum

    Google Scholar 

  • Perutz, M.F., Kendrew, J.C., Watson, H.C. (1965). J.Mol.Biol. 13, 669

    Google Scholar 

  • Plagens, U. (1971). Vergleichende Untersuchungen der Hämoglobine verschiedener Chironomiden. Inaugural-Dissertation, Ludwig-Maximilians Universität, Munich

    Google Scholar 

  • Prokofyeva-Belgovskaya, A.A. (1947). J.Genet. 48, 80

    Google Scholar 

  • Prosser, C.Ladd (1973). Comparative animal physiology, 3rd edition. Philadelphia: W.B. Saunders

    Google Scholar 

  • Quincey, R.V. (1971). Biochem.J. 123, 227

    Google Scholar 

  • Rae, P.M.M. (1972). Advan.Cell Mol.Biol. 2, 109

    Google Scholar 

  • Rice, N.R. (1972). Change in repeated DNA in evolution. In: Evolution of genetic systems, H.H. Smith, ed., p. 44. New York: Gordon and Breach

    Google Scholar 

  • Ris, H., Kubai, D.F. (1970). Ann.Rev.Genet. 4, 263

    Google Scholar 

  • Robertus, J.D., Alden, R.A., Birktoft, J.J., Kraut, J., Powers, J.C., Wilcox, P.E. (1972). Biochem. 11, 3439

    Google Scholar 

  • Rohlfing, D.L., Fox, S.W. (1967). Arch.Biochem.Biophys. 118, 122

    Google Scholar 

  • Rohlfing, D.L. (1969). Advan.Catalysis 20, 373

    Google Scholar 

  • Rossmann, M.G., Moras, D., Olsen, K.W. (1974). Nature 250, 194

    Google Scholar 

  • Russel, R.L., Abelson, J.N., Landy, A., Gefter, M.L., Brenner, S., Smith, J.D. (1970). J.Mol.Biol. 47, 1

    Google Scholar 

  • Ruud, J.T. (1954). Nature 173, 848

    Google Scholar 

  • Sallei, J.P., Zuckerkandl, E. (1975). Biochim. 57, 343

    Google Scholar 

  • Schachman, H.K., Adler, J., Radding, C.M., Lehmann, I.R., Kornberg, A. (1960). J.Biol.Chem. 235, 3242

    Google Scholar 

  • Schroeder, W.A., Huisman, T.H.J. (1970). Investigations of molecular variation in human fetal hemoglobin in the infant and in certain hematological conditions in the adult. In: Protides of the biological fluids, H. Peeters, ed., p. 249. Oxford: Pergamon

    Google Scholar 

  • Schulz, G.E., Schirmer, R.H. (1974). Nature 250, 144

    Google Scholar 

  • Simoni, R.D., Criddle, R.S., Stumpf, D.K. (1967). J.Biol.Chem. 242, 573

    Google Scholar 

  • Slizynski, B.M. (1945). Proc.Roy.Soc.Edinburgh B, 62, 114

    Google Scholar 

  • Smith, E.L., De Lange, R.J., Bonner, J. (1970). Physiol.Rev. 50, 159

    Google Scholar 

  • Spradling, A., Penman, S., Campo, M.S., Bishop, J.O. (1974). Cell 3, 23

    Google Scholar 

  • Stebbins, G. Ledyard (1971). Processes of organic evolution, 2nd ed., Englewood Cliffs, N.J.: Prentice Hall

    Google Scholar 

  • Steen, J.B., Berg, T. (1966). Comp.Biochem.Physiol. 18, 517

    Google Scholar 

  • Stenzel, P. (1974). Nature 252, 62

    Google Scholar 

  • Suzuki, Y., Gage, L.P., Brown, D.B. (1972). J.Mol.Biol. 70, 637

    Google Scholar 

  • Thomas, C.A., Jr. (1966). Progr.Nucl.Ac.Res.Mol.Biol. 5, 315

    Google Scholar 

  • Titani, K., Hermodson, M.A., Ericsson, L.H., Walsh, K.K., Neurath, H. (1972). Nature New Biol. 238, 35

    Google Scholar 

  • Walker, P.M.B. (1968). Nature 219, 228

    Google Scholar 

  • Walker, P.M.B. (1971). Progr.Biophys.Mol.Biol. 23, 147

    Google Scholar 

  • Walker, P.M.B., Flamm, W.G., Mclaren, A. (1969). Highly repetitive DNA in rodents. In: Handbook of molecular cytology, A. Lima de Faria, ed., p. 52. Amsterdam: North Holland

    Google Scholar 

  • Walvig, F. (1958). Nytt Magasin Zool. 6, 111

    Google Scholar 

  • Watts, D.C. (1971). Evolution of phosphagen kinases. In: Biochemical evolution and the origin of life, E. Schoffeniels, ed., p. 150. Amsterdam: North Holland

    Google Scholar 

  • Welling, G.W., Leijenaar-van den Berg, G., van Dijk, B., van den Berg, A., Groen, G., Gaastra, W., Emmens, M., Beintema, J.J. (1975). BioSystems 6, 239

    Google Scholar 

  • Woese, C.R. (1965). Proc.Natl.Acad.Sci. 54, 1546

    Google Scholar 

  • Woese, C.R. (1969). J.Mol.Biol. 43, 235

    Google Scholar 

  • Woese, C.R. (1971). J.Theoret.Biol. 33, 29

    Google Scholar 

  • Ycas, M. (1972). J.Mol.Evol. 2, 17

    Google Scholar 

  • Ycas, M. (1974). J.Theoret.Biol. 44, 145

    Google Scholar 

  • Yunis, J.J., Yasmineh, W.G. (1971). Science 174, 1200

    Google Scholar 

  • Zamenhof, S., Eichorn, H.H. (1967). Nature 216, 456

    Google Scholar 

  • Zubay, G., Watson, M.R. (1959). J.Biophys.Biochem.Cytol. 5, 51

    Google Scholar 

  • Zuckerkandl, E. (1960). Ann.Inst.Oceanog. 38, 1

    Google Scholar 

  • Zuckerkandl, E. (1965). Sci.Am. 212, 110

    Google Scholar 

  • Zuckerkandl, E. (1970). European J.Clin.Biol.Res. 15, 369

    Google Scholar 

  • Zuckerkandl, E. (1972). Biochim. 54, 1095

    Google Scholar 

  • Zuckerkandl, E. (1974a). Biochim. 56, 937

    Google Scholar 

  • Zuckerkandl, E. (1974b). Accomplissements et perspectives de la paleogenetique chimique. In: Ecole de Roscoff - 1974, p. 69. Paris: Centre National de la Recherche Scientifique

    Google Scholar 

  • Zuckerkandl, E. (1976a). J.Mol.Evol., in press

  • Zuckerkandl, E. (1976b). Programs of gene action and progressive evolution. In: Molecular anthropology, M. Goodman, R.E. Tashian, eds. New York: Plenum, in press

    Google Scholar 

  • Zuckerkandl, E., Derancourt, J., Vogel, H. (1971). J.Mol.Biol. 59, 473

    Google Scholar 

  • Zuckerkandl, E., Pauling, L. (1962). Molecular disease, evolution, and genic heterogeneity. In: Horizons in biochemistry, M. Kasha, B. Pullman, eds., p. 189. New York: Academic Press

    Google Scholar 

  • Zuckerkandl, E., Pauling, L. (1965a). J.Theoret.Biol. 8, 357

    Google Scholar 

  • Zuckerkandl, E., Pauling, L. (1965b). Evolutionary divergence and convergence in proteins. In: Evolving genes and proteins., V. Bryson, H.J. Vogel, eds., p. 97. New York: Academic Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Directeur de Recherche at Centre National de la Recherche Scientifique, Paris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuckerkandl, E. The appearance of new structures and functions in proteins during evolution. J Mol Evol 7, 1–57 (1975). https://doi.org/10.1007/BF01732178

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732178

Key words

Navigation