Skip to main content
Log in

The steady-state relationship between sodium and chloride transmembrane electrochemical potential differences inNecturus gallbladder

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Intracellular C1, K and Na activities (a iCl ,a ik anda iNa ) and transmucosal membrane potential (E m) in epithelial cells ofNecturus gallbladder were measured at different external Na concentrations ([Na]o), with liquid ion-exchanger and conventional microelectrodes. Bladders were mounted in a divided chamber at 23°C between identical HCO3-free Ringer solutions containing 5mm K. The pH was 7.2. Tris was substituted for Na. Measurements were made under steady-state conditions as determined by the constancy of the transepithelial potential difference. Both,a iCl anda iNa increased in a saturable fashion with [Na]o.E m did not change significantly. Average values (±sem) under normal conditions ([Na]o=100mm) fora iCl ,a iNa andE m were 16.8±0.8mm (n=9), 9.7±0.6mm (n=10) and −52.6±0.6 mV (n=26), respectively. In Na-free mediaa iCl declined to its equilibrium value.a iK (96±2mm;n=7) did not change when [Na]o was varied between 100 and 10mm but decreased to 80±3mm (n=4) in Na-free media.

Transmembrane electrochemical potential differences,\(\Delta \bar \mu _j \), for Cl and Na were calculated at four different [Na]o levels. A highly significant linear relation between\(\Delta \bar \mu _{Cl} \) and\(\Delta \bar \mu _{Na} \) was found, indicating that Cl and Na transport are energetically linked. The results support the view that the energy necessary for intracellular Cl accumulation is derived from the simultaneous dissipation of the chemical potential gradient of Na across the apical membrane and that the coupled entry mechanism is electroneutral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, W.McD., Bixenman, W.R., Frey, K.F., Garcia-Diaz, J.F., O'Regan, M.G., Owens, J.L. 1979a. Energetics of coupled Na+ and Cl entry into epithelial cells of bullfrog small intestine.Biochim. Biophys. Acta 551:207

    PubMed  Google Scholar 

  • Armstrong, W.McD., Byrd, B.J., Hamang, P.M. 1973. The Na+-gradient andd-galactose accumulation in epithelial cells of bullfrog small intestine.Biochim. Biophys. Acta 330:237

    PubMed  Google Scholar 

  • Armstrong, W.McD., Garcia-Diaz, J.F. 1980. Ion-selective microelectrodes. Theory and technique.Fed. Proc. (in press)

  • Armstrong, W.McD., Garcia-Diaz, J.F., O'Doherty, J., O'Regan, M.G. 1979b. Transmucosal Na+ electrochemical potential difference and solute accumulation in epithelial cells of the small intestine.Fed. Proc. 38:2722

    PubMed  Google Scholar 

  • Colowick, S.P., Kaplan, N.O. (editors). 1955. Methods in Enzymology. Vol. I, p. 144. Academic Press, New York

    Google Scholar 

  • Conway, B.E. (editor) 1952. Electrochemical Data. Elsevier, Amsterdam

    Google Scholar 

  • Conway, E.J. 1957. Nature and significance of concentration relations of potassium and sodium ions in skeletal muscle.Physiol. Rev. 37:84

    PubMed  Google Scholar 

  • Cremaschi, D., Henin, S. 1975. Na+ and Cl transepithelial routes in rabbit gallbladder. Tracer analysis of the transports.Pfluegers Arch. 361:33

    Article  Google Scholar 

  • Diamond, J.M. 1968. Transport of salt and water in rabbit and guinea pig gallbladder.J. Gen. Physiol. 48:1

    Google Scholar 

  • Diamond, J.M. 1968. Transport mechanisms in the gallbladder.In: Handbook of Physiology, Section 6. C.F. Code, editor. Vol. 5, pp. 2451–2482. Williams & Willkins, Baltimore

    Google Scholar 

  • Dietschy, J.M. 1964. Water and solute movement across the wall of the everted rabbit gallbladder.Gastroenterology 47:395

    PubMed  Google Scholar 

  • Duffey, M.E., Thompson, SM., Frizzell, R.A., Schultz, S.G. 1979. Intracellular chloride activities and active chloride absorption in the intestinal epithelium of the winter flounder.J. Membrane Biol. 50:331

    Article  Google Scholar 

  • Duffey, M.E., Turnheim, K., Frizzell, R.A., Schultz, S.G. 1978. Intracellular chloride activities in rabbit gallbladder: Direct evidence for the role of the sodium-gradient in energizing “uphill” chloride transport.J. Membrane Biol. 42:229

    Article  Google Scholar 

  • Edelman, A., Curci, S., Samarzija, I., Frömter, E. 1978. Determination of intracellular K activity in rat kidney proximal tubular cells.Pfluegers Arch. 378:37

    Google Scholar 

  • Ellis, E., Deitmer, J.W. 1978. The relationship between the intra-and extracellular sodium activity of sheep heart Purkinje fibres during inhibition of the Na−K pump.Pfluegers Arch. 377:209

    Google Scholar 

  • Field, M., Karnaky Jr., K.J., Smyth, P.L., Bolton, J.E., Kinter, W.B. 1978. Ion transport across the isolated intestinal mucosa of winter flounder,Pseudopleuronectes americanus.J. Membrane Biol. 41:265

    Google Scholar 

  • Fossat, B., Lahlou, B. 1979. The mechanism of coupled transport of sodium and chloride in isolated urinary bladder of the trout.J. Physiol. (London) 294:211

    Google Scholar 

  • Frizzell, R.A., Dugas, M.C., Schultz, S.G. 1975. Sodium chloride transport by rabbit gallbladder. Direct evidence for a coupled NaCl influx process.J. Gen. Physiol. 65:769

    PubMed  Google Scholar 

  • Frizzell, R.A., Field, M., Schultz, S.G. 1979. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236:1

    Google Scholar 

  • Frömter, E. 1972. The route of passive ion movement through the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259

    Google Scholar 

  • Frömter, E., Diamond, J. 1972. Route of passive ion permeation in epithelia.Nature New Biol. 235:9

    PubMed  Google Scholar 

  • Fujimoto, M., Kubota, T. 1976. Physicochemical properties of a liquid ion-exchanger microelectrode and its application to biological fluids.Jpn. J. Physiol. 26:631

    PubMed  Google Scholar 

  • Garcia-Diaz, J.F., O'Doherty, J., Armstrong, W.McD. 1978. Potential profile, K and Na activities inNecturus small intestine.Physiologist 21:41

    PubMed  Google Scholar 

  • Glitsch, H.G. 1979. Characteristics of active Na transport in intact cardiac cells.Am. J. Physiol. 236:189

    Google Scholar 

  • Graf, J., Giebisch, G. 1979. Intracellular sodium activity and sodium transport inNecturus gallbladder epithelium.J. Membrane Biol. 47:327

    Google Scholar 

  • Kikuta, Y., Hoshi, T. 1979. Role of sodium ions inp-amino hippurate transport by newt kidney.Biochim. Biophys. Acta 553:404

    PubMed  Google Scholar 

  • Kimura, G., Spring, K.R. 1979. Luminal Na+ entry intoNecturus proximal tubule cells.Am. J. Physiol. 236:F295

    PubMed  Google Scholar 

  • Moody, G.J., Thomas, J.D.R. 1971. Selective Ion Sensitive Electrodes. Merrow, Watford (England)

    Google Scholar 

  • O'Doherty, J., Garcia-Diaz, J.F., Armstrong, W.McD. 1979. Sodium-selective liquid ion-exchanger microelectrodes for intracellular measurements.Science 203:1349

    PubMed  Google Scholar 

  • Reuss, L. 1979. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder: III. Ionic permeability of the basolateral cell membrane.J. Membrane Biol. 47:239

    Article  Google Scholar 

  • Reuss, L., Finn, A.L. 1975a. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder: I. Circuit analysis and steady-state effects of mucosal solutions ionic substitutions.J. Membrane Biol. 25:115

    Google Scholar 

  • Reuss, L., Finn, A.L. 1975b. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder: II. Ionic permeability of the apical cell membrane.J. Membrane Biol. 25:141

    Google Scholar 

  • Reuss, L., Grady, T. 1979. Effects of external sodium and cell membrane potential on intracellular chloride activity in gallbladder epithelium.J. Membrane Biol. 51:15

    Google Scholar 

  • Reuss, L., Weinman, S.A. 1979. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium.J. Membrane Biol. 49:345

    Article  Google Scholar 

  • Schultz, S.G., Curran, P.F. 1970. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637

    PubMed  Google Scholar 

  • Schultz, S.G., Frizzell, R.A., Nellans, H.N. 1974. Ion transport by mammalian small intestine.Annu. Rev. Physiol. 36:51

    Google Scholar 

  • Spring, K.R., Kimura, G. 1978. Chloride reabsorption by renal proximal tubules ofNecturus.J. Membrane Biol. 38:233

    Article  Google Scholar 

  • Steiner, R.A., Oehme, M., Ammann, D., Simon, W. 1979. Neutral carrier sodium ion-selective microelectrode for intracellular studies.Anal. Chem. 51:351

    Google Scholar 

  • Stermann, R., Wagle, S.R., Decker, K. 1978. Inverse effects ofd-galactosamine and inorganic phosphate on glycogenolysis in isolated rat hepatocytes.Eur. J. Biochem. 88:79

    PubMed  Google Scholar 

  • Thomas, R.C. 1969. Membrane current and intracellular sodium changes in a snail neurone during extrusion of injected sodium.J. Physiol. (London) 210:495

    Google Scholar 

  • Turnberg, L.A. 1978. Intestinal transport of salt and water.Clin. Sci. Mol. Med. 54:337

    PubMed  Google Scholar 

  • Van Os, C.H., Slegers, J.F.G. 1975. The electrical potential profile of gallbladder epithelium.J. Membrane Biol. 24:341

    Google Scholar 

  • Wheeler, H.O. 1963. Transport of electrolytes and water across wall of rabbit gallbladder.Am. J. Physiol. 205:427

    PubMed  Google Scholar 

  • White, J.F., Armstrong, W.McD. 1971. Effect of transported solutes on membrane potentials in bullfrog small intestine.Am. J. Physiol. 221:194

    Google Scholar 

  • Youmans, S.J. 1979. The Role of Bicarbonate and Exogenous Cyclic AMP in the Regulation of Ion-Transport in Isolated Bullfrog Small Intestine. Ph.D. Thesis. Indiana University, Indianapolis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Diaz, J.F., Armstrong, W.M. The steady-state relationship between sodium and chloride transmembrane electrochemical potential differences inNecturus gallbladder. J. Membrain Biol. 55, 213–222 (1980). https://doi.org/10.1007/BF01869462

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869462

Keywords

Navigation