Skip to main content
Log in

An in vitro investigation of gastrointestinal Na+ uptake mechanisms in freshwater rainbow trout

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

In vitro gut-sac preparations of all four sections (stomach, anterior, mid, and posterior intestine) of the gastrointestinal tract (GIT) of freshwater rainbow trout, together with radiotracer (22Na) techniques, were used to study unidirectional Na+ uptake rates (UR, mucosal → blood space) and net absorptive fluid transport rates (FTR) under isosmotic conditions (mucosal = serosal osmolality). On an area-specific basis, unidirectional Na+ UR was highest in the mid-intestine, but when total gut area was taken into account, the three intestinal sections contributed equally, with very low rates in the stomach. The theoretical capacity for Na+ uptake across the whole GIT is sufficient to supply all of the animal’s nutritive requirements for Na+. Transport occurs by low affinity systems with apparent K m values 2–3 orders of magnitude higher than those in the gills, in accord with comparably higher Na+ concentrations in chyme versus fresh water. Fluid transport appeared to be Na+-dependent, such that treatments which altered unidirectional Na+ UR generally altered FTR in a comparable fashion. Pharmacological trials (amiloride, EIPA, phenamil, bafilomycin, furosemide, hydrochlorothiazide) conducted at a mucosal Na+ concentration of 50 mmol L−1 indicated that GIT Na+ uptake occurs by a variety of apical mechanisms (NHE, Na+ channel/H+ ATPase, NCC, NKCC) with relative contributions varying among sections. However, at a mucosal Na+ concentration of 10 mmol L−1, EIPA, phenamil, bafilomycin, and hydrochlorothiazide were no longer effective in inhibiting unidirectional Na+ UR or FTR, suggesting the contribution of unidentified mechanisms under low Na+ conditions. A preliminary model is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Avella M, Bornancin M (1989) A new analysis of ammonia and sodium transport through the gills of the freshwater rainbow trout (Salmo gairdneri). J Exp Biol 142:155–175

    Google Scholar 

  • Benos D (1982) Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol 242:C131–C145

    CAS  PubMed  Google Scholar 

  • Beyenbach KW, Wieczorek H (2006) The V-type H+ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577–589

    Article  CAS  PubMed  Google Scholar 

  • Bucking C, Wood CM (2006a) Water dynamics in the digestive tract of freshwater rainbow trout during the processing of a single meal. J Exp Biol 209:1883–1893

    Article  CAS  PubMed  Google Scholar 

  • Bucking C, Wood CM (2006b) Gastrointestinal processing of Na+, Cl, and K+ during digestion: implication for homeostatic balance in freshwater rainbow trout. Am J Physiol 291:R1764–R1772

    CAS  Google Scholar 

  • Bucking C, Wood CM (2007) Gastrointestinal transport of Ca2+ and Mg2+ during the digestion of a single meal in the freshwater rainbow trout. J Comp Physiol B177:349–360

    Article  Google Scholar 

  • Bucking C, Wood CM (2009) The effect of postprandial changes in pH along the gastrointestinal tract on the distribution of ions between the solid and fluid phases of chyme in rainbow trout. Aquacult Nutr 15:282–296

    Article  CAS  Google Scholar 

  • Bucking C, Wood CM (2012) Digestion of a single meal affects gene expression of ion and ammonia transporters and glutamine synthetase activity in the gastrointestinal tract of freshwater rainbow trout. J Comp Physiol B 181:341–350

    Article  Google Scholar 

  • Bury NR, Grosell M, Wood CM, Gogstrand C, Wilson RW, Rankin JC, Busk M, Lecklin T, Jensen FB (2001) Intestinal iron uptake in the European flounder (Platichthys flesus). J Exp Biol 204:3779–3787

    CAS  PubMed  Google Scholar 

  • Cooper CA, Wilson RW (2008) Post-prandial alkaline tide in freshwater rainbow trout: effects of meal anticipation on recovery from acid-base and ion regulatory disturbances. J Exp Biol 211:2542–2550

    Article  CAS  PubMed  Google Scholar 

  • D’Cruz LM, Wood CM (1998) The influence of dietary salt and energy on the response to low pH in juvenile rainbow trout. Physiol Zool 71:642–657

    PubMed  Google Scholar 

  • Evans DH (2011) Freshwater fish gill ion transport: August Krogh to morpholinos and microprobes. Acta Physiol Scand 202:349–359

    Article  CAS  Google Scholar 

  • Ferraris RP, Ahearn GA (1984) Sugar and amino acid transport in fish intestine. J Biochem Physiol 77A:397–413

    Article  CAS  Google Scholar 

  • Flik G, Kaneko T, Greco AM, Li J, Fenwick JC (1997) Sodium dependent ion transporters in trout gills. Fish Physiol Biochem 17:385–396

    Article  CAS  Google Scholar 

  • Frizzell RA, Smith PL, Vosburgh E, Field M (1979) Coupled sodium-chloride influx across brush border of flounder intestine. J Membrane Biol 46:27–39

    Article  CAS  Google Scholar 

  • Gibson JS, Ellory JC, Lahlou B (1987) Salinity acclimation and intestinal salt transport in the flounder: the role of the basolateral cell membrane. J Exp Biol 128:371–382

    Google Scholar 

  • Giménez I (2006) Molecular mechanisms and regulation of furosemide-sensitive Na-K-Cl cotransporters. Curr Opin Nephrol Hypertens 15:517–523

    Article  PubMed  Google Scholar 

  • Goss GG, Wood CM (1990) Na+ and Cl uptake kinetics, diffusive effluxes, and acidic equivalent fluxes across the gills of rainbow trout. I. Responses to environmental hyperoxia. J Exp Biol 152:521–547

    CAS  Google Scholar 

  • Grosell M (2011) The role of the gastrointestinal tract in salt and water balance. In: Grosell M, Farrell AP, Brauner CJ (eds) The multifunctional gut of fish, vol 30, pp 135–164

  • Grosell M, Genz J (2006) Oubain sensitive bicarbonate secretion and acidic fluid absorption by the marine teleost intestine play a role in osmoregulation. Am J Physiol 291:R1145–R1156

    CAS  Google Scholar 

  • Grosell M, Jensen FB (1999) NO2 uptake and HCO3 excretion in the intestine of the European flounder (Platichthys flesus). J Exp Biol 202:2103–2110

    CAS  PubMed  Google Scholar 

  • Grosell M, Wood CM, Wilson RW, Bury NR, Hogstrand C, Rankin C, Jensen FB (2005) Active bicarbonate secretion plays a role in chloride and water absorption of the European flounder intestine. Am J Physiol 288:R936–R946

    CAS  Google Scholar 

  • Grosell M, Gilmour KM, Perry SF (2007) Intestinal carbonic anhydrase, bicarbonate, and proton carriers play a role in the acclimation of rainbow trout to seawater. Am J Physiol 293:R2099–R2111

    CAS  Google Scholar 

  • Halm DR, Krasny EJ Jr, Frizzell RA (1985) Electrophysiology of flounder intestinal mucosa. II. Relation of the electrical potential profile to coupled NaCl absorption. J Gen Physiol 85:865–883

    Article  CAS  PubMed  Google Scholar 

  • Hoogerwerf WA, Tsao SC, Devuyst O, Levine SA, Chris Yun CH, Yip JW, Cohen ME, Wilson PD, Lazenby AJ, Tse CM, Donowitz M (1996) NHE2 and NHE3 are human and rabbit intestinal brush-border proteins. Am Physiol Soc G29–G40

  • Horng JL, Hwang PP, Shih TH, Wen ZH, Lin CS, Lin LY (2009) Chloride transport in mitochondrion-rich cells of euryhaline tilapia (Oreochromis mossambicus) larvae. Am J Physiol 297:C845–C854

    Article  CAS  Google Scholar 

  • Howard JN, Ahearn GA (1988) Parallel antiport mechanisms for Na+ and Cl transport in herbivorous teleost intestine. J Exp Biol 135:65–76

    CAS  PubMed  Google Scholar 

  • Hwang PP, Lee TH (2007) New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol 148:A479–A497

    Article  Google Scholar 

  • Kirschner LB (2004) The mechanism of sodium chloride uptake in hyperregulating aquatic animals. J Exp Biol 207:1439–1452

    Article  CAS  PubMed  Google Scholar 

  • Kleyman TR, Cragoe EJ Jr (1988) Amiloride and its analogs as tools in the study of ion transport. J Membr Biol 105:1–21

    Article  CAS  PubMed  Google Scholar 

  • Klinck JS, Wood CM (2011) In vitro characterization of cadmium transport along the gastro-intestinal tract of freshwater rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 102:58–72

    Article  CAS  PubMed  Google Scholar 

  • Klinck JS, Wood CM (2013) In situ analysis of cadmium uptake in four sections of the gastro-intestinal tract of rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf 88:95–102

    Article  CAS  PubMed  Google Scholar 

  • Klinck JS, Singh AA, Wood CM (2012) In vitro characterization of calcium transport along the gastrointestinal tract of rainbow trout Oncorhynchus mykiss. J Fish Biol 81:1–20

    Article  CAS  PubMed  Google Scholar 

  • Kumai Y, Perry SF (2012) Mechanisms and regulation of Na+ uptake by freshwater fish. Respir Physiol Neurobiol 184:249–256

    Article  CAS  PubMed  Google Scholar 

  • Loretz CA (1995) Electrophysiology of ion transport in teleost intestinal cells. In: Wood CM, Shuttleworth TJ (eds) Cellular and molecular approaches to fish ionic regulation (Fish Physiology, vol 14). Academic Press, San Diego, pp 25–56

    Google Scholar 

  • Machen TE, Silen W, Forte JG (1978) Na+ transport by mammalian stomach. Am J Physiol G228–G235

  • Marshall WS (2002) Na+, Cl, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. J Exp Zool 293:264–283

    Article  CAS  PubMed  Google Scholar 

  • Morgan TP, Grosell M, Gilmour KM, Playle RC, Wood CM (2004) Time course analysis of the mechanism by which silver inhibits active Na+ and Cl uptake in the gills of rainbow trout. Am J Physiol 287:R234–R242

    CAS  Google Scholar 

  • Musch MW, Orellana SA, Kimberg LS, Field M, Halm DR, Krasny EJ, Frizzell RA (1982) Na+-K+-Cl co-transport in the intestine of a marine teleost. Nature 300:351–353

    Article  CAS  PubMed  Google Scholar 

  • Nadella SR, Grosell M, Wood CM (2006) Physical characterization of high-affinity gastrointestinal Cu transport in vitro in freshwater rainbow trout Oncorhynchus mykiss. J Comp Physiol B 176:793–806

    Article  CAS  PubMed  Google Scholar 

  • Nadella SR, Grosell M, Wood CM (2007) Mechanisms of dietary Cu uptake in freshwater rainbow trout: evidence for Na-assisted Cu transport and a specific metal carrier in the intestine. J Comp Physiol B 177:433–446

    Article  CAS  PubMed  Google Scholar 

  • Nadella SR, Hung CCY, Wood CM (2011) Mechanistic characterization of gastric copper transport in rainbow trout. J Comp Physiol B 181:27–41

    Article  CAS  PubMed  Google Scholar 

  • O’Grady SM, Musch MW, Field M (1986) Stoichiometry and ion affinities of the Na-K-Cl cotransport system in the intestine of the winter flounder (Pseudopleuronectes americanus). J Membr Biol 91:33–41

    Article  PubMed  Google Scholar 

  • Ojo AA, Wood CM (2007) In vitro analysis of the bioavailability of six metals via the gastro-intestinal tract of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 83:10–23

    Article  CAS  PubMed  Google Scholar 

  • Parks SK, Tresguerres M, Goss GG (2008) Theoretical considerations underlying Na+ uptake mechanisms in freshwater fishes. Comp Biochem Physiol C148:411–418

    Google Scholar 

  • Parks SK, Tresguerres M, Goss GG (2009) Cellular mechanism of Cltransport in trout gill mitochondrion rich cells. Am J Physiol 296:R1161–R1169

    CAS  Google Scholar 

  • Scott GR, Schulte PM, Wood CM (2006) Plasticity of osmoregulatory function in the killifish intestine: drinking rates, salt and water transport, and gene expression after freshwater transfer. J Exp Biol 209:4040–4050

    Article  CAS  PubMed  Google Scholar 

  • Smith MW (1966) Time course and nature of temperature-induced changes in sodium-glucose interactions of the goldfish intestine. J Physiol 183:649–657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith MW, Ellory JC, Lahlou B (1975) Sodium and chloride transport by the intestine of the European flounder Platichthys flesus adapted to fresh or sea water. Pflugers Arch 357:303–312

    Article  CAS  PubMed  Google Scholar 

  • Smith NF, Talbot C, Eddy FB (1989) Dietary salt intake and its relevance to ionic regulation in freshwater salmonids. J Fish Biol 35:749–753

    Article  Google Scholar 

  • Stokes JB, Lee I, D’Amico M (1984) Sodium chloride absorption by the urinary bladder of the winter flounder. J Clin Invest 74:7–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf K (1963) Physiological salines for fresh-water teleosts. Prog Fish Cult 25:135–140

    Article  CAS  Google Scholar 

  • Wood CM (1988) Acid-base and ionic exchanges at gills and kidney after exhaustive exercise in the rainbow trout. J Exp Biol 146:461–481

    Google Scholar 

  • Wood CM, Bucking C (2011) The role of feeding in salt and water balance. In: Farrell AP, Brauner CJ (eds) The multifunctional gut of fish (Fish Physiology, vol 30). Academic Press, San Diego, pp 165–212

    Google Scholar 

Download references

Acknowledgments

This study was funded by an NSERC Discovery Grant to CMW, who is supported by the Canada Research Chair Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita R. Nadella.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadella, S.R., Patel, D., Ng, A. et al. An in vitro investigation of gastrointestinal Na+ uptake mechanisms in freshwater rainbow trout. J Comp Physiol B 184, 1003–1019 (2014). https://doi.org/10.1007/s00360-014-0855-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-014-0855-7

Keywords

Navigation