Skip to main content
Log in

Chloride reabsorption by renal proximal tubules of necturus

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Movement of Cl from the lumen ofNecturus proximal tubule into the cells is mediated and dependent on the presence of luminal Na. Intracellular Cl activity was monitored with ion selective microelectrodes. In Cl Ringer's perfused kidneys, cell Cl activity was 24.5±1.1mm, 2 to 3 times higher than that predicted for passive distribution. When luminal NaCl was partially replaced by mannitol (capillaries perfused with Cl Ringer's) cell Cl decreased showing a sigmoidal dependence on luminal NaCl. Peritubular membrane potential was unaltered. Sulfate Ringer's perfusion of the kidneys washed out all cell Cl but did not alter peritubular membrane potential. Chloride did not enter the cell when the tubule lumen was perfused with 100mm KCl, LiCl, or tetramethylammonium Cl. Luminal perfusion of NaCl caused cell Cl to rise rapidly to the same value as the controls in the Cl Ringer's experiments. Perfusion of the tubule lumen with mixtures of NaCl and Na2SO4, while the capillaries contained sulfate Ringer's yielded a sigmoidal dependence of cell Cl on luminal NaCl activity. Chloride movement from the lumen into the proximal tubule cells required approximately equal concentrations of Na and Cl. Current clamp experiments indicated that intracellular chloride activity was insensitive to alterations in liminal membrane potential, suggesting that chloride entry was electrically neutral. The transcellular chloride flux was calculated to constitute about one half of the normal chloride reabsorption rate. We conclude that the cell Cl activity is primarily determined by the NaCl concentration in the tubule lumen and that Cl entry across the luminal membrane is mediated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anagnostopoulos, T. 1975. Anion permeation in the proximal tubule ofNecturus kidney: The shunt pathway.J. Membrane Biol. 24:365

    Article  Google Scholar 

  2. Bott, P.A. 1962. Micropuncture study of renal excretion of water, K, Na and Cl inNecturus.Am. J. Physiol. 203:662

    PubMed  Google Scholar 

  3. Boulpaep, E.L. 1967. Ion permeability of the peritubular and luminal membrane of the renal tubular cell.In: Transport und Funktion Intracellulärer Elektrolyte. F. Krück, editor. pp. 98–107. Urban & Schwarzenberg, Munich

    Google Scholar 

  4. Frizzell, R.A., Dugas, M.C., Schultz, S.G. 1975. Sodium chloride transport by rabbit gallbladder.J. Gen. Physiol. 65:769

    PubMed  Google Scholar 

  5. Giebisch, G. 1961. Measurements of electrical potential differences in single nephrons of the perfusedNecturus kidney.J. Gen. Physiol. 44:659

    PubMed  Google Scholar 

  6. Giebisch, G., Windhager, E.E. 1963. Measurment of chloride movement across single proximal tubules ofNecturus kidney.Am. J. Physiol. 204:387

    PubMed  Google Scholar 

  7. Hénin, S., Cremaschi, D. 1975. Transcellular ion route in rabbit gallbladder.Pfluegers Arch. 355:125

    Google Scholar 

  8. Khuri, R.N. 1974. Electrochemical potentials of potassium and chloride in the proximal renal tubules ofNecturus maculosus.In: Ion-Selective Microelectrodes. H.J. Berman and N.C. Hebert, editors. pp. 109–126. Plenum, New York

    Google Scholar 

  9. Lindemann, B. 1971. Electrical excitation of the outer resistive membrane in frog skin epithelium.In: Electrophysiology of Epithelial Cells. G. Giebisch, editor. pp. 53–88. F.K. Schattauer-Verlag, Stuttgart

    Google Scholar 

  10. Nellans, H.N., Frizzell, R.A., Schultz, S.G. 1973. Coupled sodium-chloride influx across the brush border of rabbit ileum.Am. J. Physiol. 225:467

    PubMed  Google Scholar 

  11. Orme, F.W. 1969. Liquid ion-exchanger microelectrodes.In: Glass Microelectrodes. M. Lavallee, O.F. Schanne, and N.C. Hebert, editors. pp. 376–395. Wiley, New York

    Google Scholar 

  12. Rose, R.C., Nahrwold, D.L. 1976. Electrolyte transport by gallbladders of rabbit and guinea pig: Effect of amphotericin B and evidence of rheogenic Na transport.J. Membrane Biol. 29:1

    Google Scholar 

  13. Spring, K.R. 1973. Current-induced voltage transients inNecturus proximal tubule.J. Membrane Biol. 13:299

    Google Scholar 

  14. Spring, K.R., Giebisch, G. 1977. Tracer Na fluxes inNecturus proximal tubule.Am. J. Physiol. 232:F 461

    Google Scholar 

  15. Spring, K.R., Giebisch, G. 1977. Kinetics of Na+ Transport inNecturus proximal tubule.J. Gen. Physiol. 70:307

    PubMed  Google Scholar 

  16. Spring, K.R., Paganelli, C.V. 1972. Sodium flux inNecturus proximal tubule under voltage clamp.J. Gen. Physiol. 60:181

    Google Scholar 

  17. Whittembury, G., Diezi, F., Diezi, J., Spring, K., Giebisch, G. (1975). Some aspects of proximal tubular sodium chloride reabsorption inNecturus kidney.Kidney Int. 7:293

    PubMed  Google Scholar 

  18. Whittembury, G., Sugino, N., Solomon, A.K. 1961. Ionic permeability and electrical potential differences inNecturus kidney cells.J. Gen. Physiol. 44:689

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spring, K.R., Kimura, G. Chloride reabsorption by renal proximal tubules of necturus. J. Membrain Biol. 38, 233–254 (1978). https://doi.org/10.1007/BF01871924

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871924

Keywords

Navigation