Skip to main content
Log in

Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Intracellular ion activities inNecturus gallbladder epithelium were measured with liquid ion-exchanger microelectrodes. Mean values for K, Cl and Na activities were 87, 35 and 22mm, respectively. The intracellular activities of both K and Cl are above their respective equilibrium values, whereas the Na activity is far below. This indicates that K and Cl are transported uphill toward the cell interior, whereas Na is extruded against its electrochemical gradient. The epithelium transports NaCl from mucosa to serosa. From the data presented and the known Na and Cl conductances of the cell membranes, we conclude that neutral transport driven by the Na electrochemical potential difference can account for NaCl entry at the apical membrane. At the basolateral membrane, Na is actively transported. Because of the low Cl conductance of the membrane, only a small fraction of Cl transport can be explained by diffusion. These data suggest that Cl transport across the basolateral membrane is a coupled process which involves a neutral NaCl pump, downhill KCl transport, or a Cl-anion exchange system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, W. McD., O'Doherty, J., García-Díaz, J.F., O'Regan, M.G. 1979. The Na+ electrochemical gradient and solute accumulation in epithelial cells of the small intestine.Fed. Proc. (in press)

  • Cremaschi, D., Hénin, S. 1975. Na+ and Cl transepithelial routes in rabbit gallbladder. Tracer analysis of the transports.Pfluegers Arch. 361:33

    Google Scholar 

  • Cremaschi, D., Hénin, S., Meyer, G., Bacciola, T. 1977. Does amphotericin B unmask an electrogenic Na+ pump in rabbit gallbladder? Shift of gallbladders with negative to gallbladders with positive transepithelial p.d.'s.J. Membrane Biol. 34:55

    Google Scholar 

  • DeLong, J., Civan, M.M. 1978. Dissociation of cellular K+ accumulation from net Na+ transport by toad urinary bladder.J. Membrane Biol. 42:19

    Google Scholar 

  • Diamond, J.M. 1968. Transport mechanisms in the gallbladder.In: Handbook of Physiology, Section 6. C.F. Code, editor. Vol. V, p. 2451. Williams & Wilkins, Baltimore

    Google Scholar 

  • Dietschy, J.M., Moore, E.W. 1964. Diffusion potentials and potassium distribution across the gallbladder wall.J. Clin. Invest. 43:1551

    PubMed  Google Scholar 

  • Duffey, M.E., Turnheim, K., Frizzell, R.A., Schultz, S.G. 1978. Intracellular chloride activities in rabbit gallbladder: Direct evidence for the role of the sodium-gradient in energizing “uphill” chloride transport.J. Membrane Biol. 42:229

    Google Scholar 

  • Frizzell, R.A., Dugas, M.C., Schultz, S.G. 1975. Sodium chloride transport by rabbit gallbladder. Direct evidence for a coupled NaCl influx process.J. Gen. Physiol. 65:769

    PubMed  Google Scholar 

  • Frömter, E. 1972. The route of passive ion movement through, the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259

    Google Scholar 

  • Fujimoto, M., Kubota, T. 1976. Physicochemical properties of a liquid ion exchanger microelectrode and its application to biological fluids.Jpn. J. Physiol. 26:631

    PubMed  Google Scholar 

  • Higgins, J.T., Jr., Gebler, B., Frömter, E. 1977. Electrical properties of amphibian urinary bladder epithelia. II. The cell potential profile inNecturus maculosus.Pfluegers Arch. 371:87

    Google Scholar 

  • Khuri, R.N., Hajjar, J.J., Agulian, S., Bogharian, K., Kalloghlian, A., Bizri, H. 1972. Intracellular potassium in cells of the proximal tubule ofNecturus maculosus.Pfluegers Arch. 338:73

    Google Scholar 

  • Lindemann, B. 1975. Impalement artifacts in microelectrode recordings of epithelial membrane potentials.Biophys. J. 15:1161

    PubMed  Google Scholar 

  • Loewenstein, W.R., Nakas, M., Socolar, S.J. 1967. Junctional membrane uncoupling. Permeability transformation of a cell membrane junction.J. Gen. Physiol. 50:1865

    PubMed  Google Scholar 

  • Mills, J.W., DiBona, D.R. 1978. Distribution of Na+ pump sites in the frog gallbladder.Nature (London) 271:273

    Google Scholar 

  • Nellans, H.N., Frizzell, R.A., Schultz, S.G. 1973. Coupled sodium-chloride influx across the brush border of rabbit ileum.Am. J. Physiol. 225:467

    PubMed  Google Scholar 

  • Nelson, D.J., Ehrenfeld, J., Lindemann, B. 1978. Volume changes and potential artifacts of epithelial cells of frog skin following impalements with microelectrodes filled with 3m KCl.J. Membrane Biol. Special Issue:91

  • Ogden, T.E., Citron, M.C., Pierantoni, R. 1978. The jet stream microbeveler: An inexpensive way to bevel ultrafine glass micropipettes.Science 201:469

    PubMed  Google Scholar 

  • Orme, F.W. 1969. Liquid ion-exchanger microelectrodes.In: Glass Microelectrodes. M. Lavallee, O.F. Schanne, and N.C. Hebert, editors. p. 376. Wiley, New York

    Google Scholar 

  • Palmer, L.G., Century, T.J., Civan, M.M. 1978. Activity coefficients of intracellular Na+ and K+ during development of frog oocytes.J. Membrane Biol. 40:25

    Google Scholar 

  • Palmer, L.G., Civan, M.M. 1975. Intracellular distribution of free potasium inChironomus salivary glands.Science 188:1321

    PubMed  Google Scholar 

  • Reuss, L. 1978. Effects of amphotericin B on the electrical properties ofNecturus gallbladder: Intracellular microelectrode studies.J. Membrane Biol. 41:65

    Google Scholar 

  • Reuss, L. 1979a. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. III. Ionic permeability of the basolateral cell membrane.J. Membrane Biol. 47:239

    Google Scholar 

  • Reuss, L. 1979b. Ion conductances and electrochemical gradient across membranes of gallbladder epithelium.In: Membrane Transport Processes. Vol. 13. Current Topics in Membrane and Transport. E. Boulpaep, editor. Academic Press, New York(in press)

    Google Scholar 

  • Reuss, L., Bello-Reuss, E., Grady, T.P. 1979. Effects of ouabain on fluid transport and electrical properties ofNecturus gallbladder. Evidence in favor of a neutral basolateral sodium transport mechanism.J. Gen. Physiol. 73:385

    PubMed  Google Scholar 

  • Reuss, L., Finn, A.L. 1975a Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions.J. Membrane Biol. 25:115

    Google Scholar 

  • Reuss, L., Finn, A.L. 1975b. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. II. Ionic permeability of the apical cell membrane.J. Membrane Biol. 25:141

    Google Scholar 

  • Reuss, L., Finn, A.L. 1977. Effects of luminal hyperosmolality on electrical pathways ofNecturus gallbladder.Am. J. Physiol. 232:C99

    PubMed  Google Scholar 

  • Rose, R.C. 1978. Electrolyte absorption by gallbladders: Models of transport.Life Sci. 23:1517

    PubMed  Google Scholar 

  • Saunders, J.H., Brown, H.M. 1977. Liquid and solid-state Cl-sensitive microelectrodes. Characteristics and application to intracellular Cl activity in Balanus photoreceptor.J. Gen. Physiol. 70:507

    PubMed  Google Scholar 

  • Spring, K.R., Kimura, G. 1978. Chloride reabsorption by renal proximal tubules ofNecturus.J. Membrane Biol. 38:233

    Google Scholar 

  • Spring, K.R., Kimura, G. 1979. Ion activities inNecturus proximal tubule.Fed. Proc. (in press)

  • Suzuki, K., Frömter, E. 1977. The potential and resistance profile ofNecturus gallbladder cells.Pfluegers Arch. 371:109

    Google Scholar 

  • Van Os, C.H., Slegers, J.F.G. 1971. Correlation between (Na−K)-activated ATPase activities and the rate of isotonic fluid transport of gallbladder epithelium.Biochim. Biophys. Acta 241:89

    PubMed  Google Scholar 

  • Van Os, C.H., Slegers, J.F.G. 1975. The electrical potential profile of gallbladder epithelium.J. Membrane Biol. 24:341

    Google Scholar 

  • Walker, J.L., Jr. 1971. Ion specific liquid exchanger microelectrodes.Anal. Chem. 43:89A

    Google Scholar 

  • Zeuthen, T. 1977. Intracellular gradients of electrical potential in the epithelial cells of theNecturus gallbladder.J. Membrane Biol. 33:281

    Google Scholar 

  • Zeuthen, T. 1978. Intracellular gradients of ion activities in the epithelial cells of theNecturus gallbladder recorded with ion-selective microelectrodes.J. Membrane Biol. 39:185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuss, L., Weinman, S.A. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium. J. Membrain Biol. 49, 345–362 (1979). https://doi.org/10.1007/BF01868991

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868991

Keywords

Navigation