Skip to main content
Log in

Stress transfer in the fibre fragmentation test

Part I An improved analysis based on a shear strength criterion

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An improved micromechanics model has been developed of the stress transfer for a single fibre embedded in a matrix subjected to uniaxial loading. Debond crack growth is analysed based on the shear strength criterion such that when the interfacial shear stress reaches the shear bond strength, debonding occurs; and the average strength concept based on Weibull statistics is considered for fibre fragmentation. The influences of the interfacial shear bond strength and the fibre strength on the stress distributions in the composite constituents are evaluated. Depending on the relative magnitudes of these two strength parameters and given the elastic constants and geometric factors, three distinct conditions of the fibre-matrix interface are properly identified which include full bonding, partial debonding and full frictional bonding. Also quantified are the necessary criteria which must be satisfied in order for each interface condition to be valid. Finally, the mean fibre fragment length is predicted as a function of applied strain using a model composite of carbon fibre-epoxy matrix. The parametric study suggests that the critical transfer length predicted when the applied strain (or stress) required for further fibre fragmentation approaches infinity, can be regarded as a material constant, which is the sum of the bonded and the debonded lengths for the model composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Kim and Y. W. Mai, in “Structure and Properties of Fibre Composites ”, Materials Science and Technology Series, Vol. 13, edited by T. W. Chou (VCH, Weinheim, Germany, 1993) Ch. 6.

    Google Scholar 

  2. H. L. Cox, Br. J. Appl. Phys. 3 (1952) 72.

    Article  Google Scholar 

  3. L. T. Drzal, M. J. Rich, J. D. Camping and W. J. Park, in “35th Annual Technical Conference on Reinforced Plastics (Composites Institute, SPI, 1980), Paper 20-C.

    Google Scholar 

  4. W. D. Bascom and R. M. Jensen, J. Adhes. 19 (1986) 219.

    Article  CAS  Google Scholar 

  5. A. S. Wimolkiatisak and J. P. Bell, Polym. Compos. 10 (1989) 162.

    Article  CAS  Google Scholar 

  6. A. N. Netravli, R. B. Henstenburg, S. L. Phoenix and P. Schwartz, ibid.10 (1989) 226.

    Article  Google Scholar 

  7. R. B. Henstenburg and S. L. Phoenix, ibid.10 (1989) 389.

    Article  CAS  Google Scholar 

  8. B. Yavin, H. E. Gallis, J. Scherf, A. Eitan and H. D. Wagner, ibid.12 (1991) 329.

    Article  Google Scholar 

  9. G. Merle and M. Xie, Compos. Sci. Technol. 40 (1991) 19.

    Article  CAS  Google Scholar 

  10. J. C. Figueroa, T. E. Carney, L. S. Schadler and C. Laird, ibid.42 (1991) 77.

    Article  CAS  Google Scholar 

  11. L. S. Schadler, C. Laird and J. C. Figueroa, J. Mater. Sci. 27 (1992) 4024–4034.

    Article  CAS  Google Scholar 

  12. M. R. Piggott, “Load Bearing Fibre Composites” (Oxford, Pergamon, 1980) Ch. 5.

    Google Scholar 

  13. A. Kelly and W. R. Tyson, J. Mech. Phys. Solids 13 (1965) 329.

    Article  CAS  Google Scholar 

  14. I. Verpoest, M. Desaeger and R. Keunings, in “Controlled Interphases in Composite Materials”, (Proc. ICCI-III), edited by H. Ishida (Elsevier Science, Cleveland, OH (1990) pp. 653–66.

    Chapter  Google Scholar 

  15. J. P. Favre, P. Sigety and D. Jacques, J. Mater. Sci. 26 (1991) 189.

    Article  CAS  Google Scholar 

  16. R. Gulino, P. Schwartz and S. L. Phoenix, ibid.26 (1991) 6655.

    Article  CAS  Google Scholar 

  17. N. Melanitis, C. Galiotis, P. L. Tetlow and C. K. L. Davies, J. Compos Mater. 26 (1992) 574–610.

    Article  CAS  Google Scholar 

  18. Th. Lacroix, B. Tilmans, R. Keunings, M. Desaeger and I. Verpoest, Compos. Sci. Technol, 43 (1992) 379–387.

    Article  CAS  Google Scholar 

  19. L. M. Zhou, J. K. Kim, C. Baillie and Y. W. Mai, ibid. Compos. Sci. Technol

  20. J. K. Kim, C. Baillie and Y. W. Mai, J. Mater. Sci. 27 (1992) 3143.

    Article  CAS  Google Scholar 

  21. L. M. Zhou, J. K. Kim and Y. W. Mai, ibid.27 (1992) 3155.

    Article  CAS  Google Scholar 

  22. J. K. Kim, L. M. Zhou and Y. W. Mai, J. Mater. Sci, to be published.

  23. Y. C. Gao, Y. W. Mai and B. Cotterell, J. Appl. Math. Phys. (ZAMP) 39 (1989) 550.

    Article  Google Scholar 

  24. S. Van Der Zwaag, J. Test. Eval. (JTEVA) 17 (1989) 292.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.K., Zhou, L. & Mai, Y.W. Stress transfer in the fibre fragmentation test. JOURNAL OF MATERIALS SCIENCE 28, 6233–6245 (1993). https://doi.org/10.1007/BF00365049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00365049

Keywords

Navigation