Skip to main content
Log in

Fibre Break Failure Processes in Unidirectional Composites. Part 1: Failure and Critical Damage State Induced by Increasing Tensile Loading

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In order to improve the testing and design of filament wound composite structures a model to predict the accumulation of fibre breakages has been developed that takes into account all physical phenomena controlling fibre failure, including the stochastic nature of fibre strength, stress transfer between fibres due to the shear of the matrix, interfacial debonding and viscosity of the matrix. In this, the first of three papers, the damage processes leading up to failure are discussed and quantified in terms of fibre breaks for the case of elastic monotonically tensile loading. It is clearly shown that the failure of a unidirectional composite structure results from the formation of random fibre breaks which at high loads coalesce into clusters of broken fibres. A critical damage state is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aussedat, E., Thionnet, A., Renard, J.: Comportement en compression des composites par une définition du mode de sollicitation en mécanique de lʼendommagement. Comptes-rendus de lʼAcadémie des Sciences de Paris, Série II 321, 533–540 (1995)

    Google Scholar 

  2. Aveston, J., Cooper, G., Kelly, A.: Single and multiple fracture, the properties of fibre composites. Proc. Conf. National Physical Laboratories, IPC Sci. and Tech Press Ltd., London: 15–24, (1971)

  3. Aveston, J., Kelly, A.: Theory of multiple fracture of fibrous compsoites. J. Mater. Sci. 8, 352–362 (1973)

    Article  Google Scholar 

  4. Batdorf, S.B.: Tensile strength of unidirectionally reinforced composites - 1. J. Reinf. Plast. Compos. 1, 153–163 (1982)

    Article  Google Scholar 

  5. Batdorf, S.B.: Tensile strength of unidirectionally reinforced composites - 2. J. Reinf. Plast. Compos. 1, 165–175 (1982)

    Article  Google Scholar 

  6. Baxevanakis, C.: Comportement statistique à rupture des composites stratifiés. Thèse, Ecole des Mines de Paris (1994)

  7. Berger, M.H., Jeulin, D.: Statistical analysis of the failure stresses of ceramic fibres: Dependence of the weibull parameters on the gauge length, diameter variation and fluctuation of defect density. J. Mater. Sci. 38, 2913–2923 (2003)

    Article  Google Scholar 

  8. Beyerlein, I.J., Zhou, C.H., Schadler, L.S.: Time evolution of stress redistribution around multiple fiber breaks in a composite with viscous and viscoelastic matrices. Int. J. Solids Struct. 35, 3177–3211 (1998)

    Article  Google Scholar 

  9. Blassiau, S.: Modélisation des phénomènes microstructuraux au sein dʼun composite unidirectionnel carbone/ époxy et prédiction de durée de vie : contrôle et qualification de réservoirs bobinés. Thèse, Ecole des Mines de Paris (2005)

  10. Blassiau, S., Thionnet, A., Bunsell, A.: Micromechanisms of load transfert in a unidirectional carbonfibre epoxy composite due to fibre failures. part 1: Micromechanisms and 3d analysis of load transfert, the elastic case. Compos. Struct. 74, 303–318 (2006)

    Article  Google Scholar 

  11. Blassiau, S., Thionnet, A., Bunsell, A.: Micromechanisms of load transfert in a unidirectional carbonfibre epoxy composite due to fibre failures. part 2: Influence of viscoelastic and plastic matrices on the mechanism of load transfert. Compos. Struct. 74, 319–331 (2006)

    Article  Google Scholar 

  12. Blassiau, S., Thionnet, A., Bunsell, A.: Damage accumulation processes and life prediction in unidirectional composites. Proc. R. Soc. (A) 463, 1135–1152 (2007)

    Article  Google Scholar 

  13. Blassiau, S., Thionnet, A., Bunsell, A.: Micromechanisms of load transfert in a unidirectional carbon-fibre epoxy composite due to fibre failures. part 3: multiscale reconstruction of composite behaviour . Compos. Struct. 83, 312–323 (2008)

    Article  Google Scholar 

  14. Blassiau, S., Thionnet, A., Bunsell, A.: Three-dimensional analysis of load transfer micro-mechanisms in fibre/matrix composites. Compos. Sci. Technol. 69, 33–39 (2009)

    Article  Google Scholar 

  15. Bunsell, A.R., Thionnet, A.: Life prediction for carbon fibre filament wound composite structures. Philos. Mag. 90, 4129–4146 (2010)

    Article  Google Scholar 

  16. Camara, S., Bunsell, A.R., Thionnet, A., Allen, D.H.: Determination of lifetime probabilities of carbon fibre composite plates and pressure vessels for hydrogen storage. Int. J. Hydrog. Energy 36, 6031–6038 (2011)

    Article  Google Scholar 

  17. Chou, H.Y., Bunsell, A.R., Mair, G., Thionnet, A.: Effect of the loading rate on ultimate strength of composites. application: Pressure vessel slow burst test. Compos. Struct. 104, 144–153 (2013)

    Article  Google Scholar 

  18. Chou, H.Y., Thionnet, A., Bunsell, A.R.: Visual indicator for the detection of end-of-life criterion for composite high pressure vessels for hydrogen storage. Int. J. Hydrog. Energy 37, 16247–16255 (2012)

    Article  Google Scholar 

  19. Chou, H.Y., Zejli, H., Thionnet, A., Bunsell, A., Mouritz, A., Bannister, M.: Détection et discrimination parémission acoustique des endommagements dans les composites stratifiés dʼunidirectionnels : rupture de fibre, macro et microfissuration intralaminaire, microdélaminage. comparaison expérience/modélisation. Matériaux 2010, 18–22 octobre, Nantes, France (2010)

  20. Clark, P.J., Evans, F.C.: Distance to nearest neighbor as a measure of spatial relationship in populations. Ecol. 35, 445–453 (1954)

    Article  Google Scholar 

  21. Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 12, 72–79 (1951)

    Google Scholar 

  22. Curtin, W.A.: Theory of mechanical properties of ceramic matrix composites. J. Am. Ceram. Soc. 74, 2837–2845 (1991)

    Article  Google Scholar 

  23. Curtin, W.A.: Dimensionality and size effects on the strength of fiber-reinforced composites. Compos. Sci. Technol. 60, 543–551 (2000)

    Article  Google Scholar 

  24. Curtin, W.A., Ibnabdeljalil, M.: Strength and reliability of fiber-reinforced composites: localized load sharing and associated size effects. Int. J. Solids Struct. 34, 2649–2668 (1997)

    Article  Google Scholar 

  25. Dagnelie, P., Florins, P. : Etude du caractère aléatoire de la répartition de points dans des espaces à deux et trois dimensions. Revue de statistiques appliquée 39, 11–20 (1991)

    Google Scholar 

  26. Feyel, F.: A multilevel finite element method (fe2) to describe the response of highly non-linear structures using generalized continua. Comput. Methods Appl. Mech. Eng. 192, 3233–3244 (2003)

    Article  Google Scholar 

  27. Goree, J.G., Gross, R.: Stresses in a three-dimensional unidirectional composite containing broken fibers. Eng. Fract. Mech 13, 395–405 (1980)

    Article  Google Scholar 

  28. Harlow, D.G., Phoenix, S.L.: The chain-of-bundles probability model for the strength of fibrous materials 1: Analysis and conjectures. J. Compos. Mater. 12, 195–213 (1978)

    Article  Google Scholar 

  29. Harlow, D.G. , Phoenix, S.L.: The chain-of-bundles probability model for the strength of fibrous materials 2: a numerical study of convergence. J. Compos. Mater. 12, 314–334 (1978)

    Article  Google Scholar 

  30. Hedgepeth, J.M.: Stress concentrations in filamentary structures. Rapport, NASA TND882, Langley research center, 1961 (1961)

  31. Hedgepeth, J.M., VanDyke, P.: Local stress concentrations in imperfect filamentary composite materials. J. Compos. Mater. 1, 294–309 (1967)

    Google Scholar 

  32. Hitchon, J.W., Phillips, D.C. : The dependence of the strength of carbon fibres on length. Fibre Sci. Technol. 12, 217–233 (1979)

    Article  Google Scholar 

  33. Hui, C.Y., Phoenix, S.L., Shia, D.: The single-filament-composite test: a new statistical theory for estimating the interfacial shear strength and weibull parameters for fiber strength. Compos. Sci. Technol. 57, 1707–1725 (1997)

    Article  Google Scholar 

  34. Kong, P.: A monte carlo study of the strength of unidirectional fiber-reinforced composites. J. Compos. Mater. 13, 311–327 (1979)

    Article  Google Scholar 

  35. Lagoudas, D.C., Hui, C.Y., Phoenix, S.L.: Time evolution of overstress profiles near broken fibers in a composite with a viscoelastic matrix. Int. J. Solids Struct. 25, 45–66 (1989)

    Article  Google Scholar 

  36. Landis, C.M., Beyerlein, I.J., McMeeking, R.M.: Micromechanical simulation of the failure of fiber reinforced composites. J. Mech. Phys. Solids 48, 621–648 (2000)

    Article  Google Scholar 

  37. Landis, C.M., McMeeking, R.M.: Stress concentrations in composites with interface sliding, matrix stiffness and uneven fiber spacing using shear lag theory. Int. J. Solids Struct. 36, 4333–4361 (1999)

    Article  Google Scholar 

  38. Lifschitz, J.M. , Rotem, A.: Time-dependent longitudinal strength of unidirectional fibrous composites. Fibre Sci. Technol. 3, 1–20 (1970)

    Article  Google Scholar 

  39. Mahesh, S., Phoenix, S.L. : Lifetime distributions for unidirectional fibrous composites under creeprupture loading. Int. J. Fract. 127, 303–360 (2004)

    Article  Google Scholar 

  40. Nedele, M.R., Wisnom, M.R.: Stress concentration factors around a broken fibre in a unidirectional carbon fibre-reinforced epoxy. Compos. 25, 549–557 (1994)

    Article  Google Scholar 

  41. Nedele, M.R., Wisnom, M.R.: Three dimensional finite analysis of the stress concentration at a single fibre break. Compos. Sci. Technol. 51, 517–524 (1994)

    Article  Google Scholar 

  42. Ochiai, S., Schulte, K., Peters, P.W.: Strain concentration for fibers and matrix in unidirectional composites. Compos. Sci. Technol. 41, 237–256 (1991)

    Article  Google Scholar 

  43. Okabe, T., Takeda, N: Size effect on tensile strength of unidirectional cfrp composites - experiment and simulation. Compos. Sci. Technol. 62, 2053–2064 (2002)

    Article  Google Scholar 

  44. Phoenix, S.L.: Statistical issues in the fracture of brittle matrix fibrous composites: localized load-sharing and associated size effects 34, 2649–2668 (1997)

  45. Phoenix, S.L., Beyerlein, I.J.: Statistical strength theory for fibrous composite materials. In: Kelly, A., Zweben, C. (eds.) Comprehensive Composite Materials, pp. 559–639. Pergamon-Elsevier Science (2000)

  46. Phoenix, S.L., Newman, W.I.: Time-dependent fiber bundles with local load sharing. ii. general weibull fibers. Phys. Rev. 80, 066115 (2009)

    Google Scholar 

  47. Renard, J., Thionnet, A.: Damage in composites: from physical mechanisms to modelling. Compos. Sci. Technol., 642–646 (2007)

  48. Rosen, B.W.: Tensile failure of fibrous composites. AIAA J. 2, 1985–1991 (1964)

    Article  Google Scholar 

  49. Scop, P.M., Argon, A.S.: Statistical theory of strength of laminated composites. J. Compos. Mater. 1, 92–99 (1967)

    Google Scholar 

  50. Scop, P.M., Argon, A.S.: Statistical theory of strength of laminated composites 2. J.Compos. Mater. 3, 30–44 (1969)

    Article  Google Scholar 

  51. Scott, A.E. , Sinclair, I., Spearing, S.M., Hepples, W., Wright, P., Mavrogordato, M.: Fibre fracture of carbon fibre laminates using ultra high resolution computed tomography. 14th European conference on Composite Materials, ECCM 14, Paper ID 575–ECCM14, 7-10 june, Budapest, Hungary, (2010)

  52. Scott, A.E, Sinclair, I., Spearing, S.M., Mavrogordato, M., Bunsell, A., Thionnet, A.: Comparison of the accumulation of fibre breaks occurring in a unidirectional carbon/epoxy composite identified in a multi-scale micro-mechanical model with that of experimental observations using high resolution computed tomography. Matriaux 2010, 18–22 octobre, Nantes, France, (2010)

  53. Scott, A.E., Sinclair, I., Spearing, S.M., Thionnet, A., Bunsell, A.R.: Damage accumulation in a carbon/epoxy composite: Comparison between a multiscale model and computed tomography experimental results. Compos.Part A. 43, 1514–1522 (2012)

    Article  Google Scholar 

  54. Souza, F.V., Allen, D.H., Kim, Y.R.: Multiscale model for predicting damage evolution in composites due to impact loading. Compos. Sci. Tech. 68, 2624–2634 (2008)

    Article  Google Scholar 

  55. Stoner, E.G., Edie, D.D., Durham, S.D.: An end-effect model for the single-filament tensile test. J. Mater. Sci. 29, 6561–6574 (1994)

    Article  Google Scholar 

  56. Talreja, R.: Multi-scale modeling in damage mechanics of composite materials. J. Mater. Sci. 41, 6800–6812 (2006)

    Article  Google Scholar 

  57. Thionnet, A.: A model for the recovery of thermomechanical properties in strongly anisotropic damaged materials. J. Compos. Mater. 35, 731–750 (2001)

    Article  Google Scholar 

  58. Thionnet, A.: From fracture to damage mechanics: a behavior law for microcracked bodies using the concept of crack opening mode. Compos. Struct. 92, 780–794 (2010)

    Article  Google Scholar 

  59. Thionnet, A., Renard. J.: Meso-macro approach to transverse cracking in laminated composites using talrejas model. Compos. Eng. 3, 851–871 (1993)

    Article  Google Scholar 

  60. Thionnet, A., Renard. J: Multi-scale analysis to determine fibre/matrix debonding criteria in sic/titanium composites with and without consideration of the manufacturing residual stresses. Compos. Sci. Technol. 58, 945–955 (1998)

    Article  Google Scholar 

  61. Thionnet, A. , Renard, J.: Modelling unilateral damage effect in strongly anisotropic materials by the introduction of loading mode in damage mechanics. Int. J. Solids Struct. 36, 4269–4287 (1999)

    Article  Google Scholar 

  62. VanDenHeuvel, P.W.J., Goutianos, S., Young, R.J., Peijs, T.: Failure phenomena in fibre-reinforced composites part 6: a finite element study of stress concentrations in unidirectional cfr epoxy composites. Compos. Sci. Technol. 64, 645–656 (2004)

    Article  Google Scholar 

  63. VanDenHeuvel, P.W.J., Wubbolts, M.K., Young, R.J., Peijs, T.Compos. A. 29, 1121–1135 (1998)

    Article  Google Scholar 

  64. Wisnom M.R., Green. D.: Tensile failure due to interaction between fibre breaks.Compos. 26, 499–508 (1995)

    Article  Google Scholar 

  65. Wright, P., Fu, X., Sinclair, I., Spearing, S.M.: Ultra high resolution computed tomography of damage in notched carbon fibre-epoxy composites. J. Compos. Mater. 42, 1993–2002 (2008)

    Article  Google Scholar 

  66. Wright, P., Moffat, A., Sinclair, I., Spearing, S.M.: High resolution tomographic imaging and modelling of notch tip damage in a laminated composite. Compos. Sci. Technol. 70, 1444–1452 (2010)

    Article  Google Scholar 

  67. Zweben, C.: Tensile failure of fibers composites. AIAA J. 6, 2325–2331 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Thionnet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thionnet, A., Chou, HY. & Bunsell, A. Fibre Break Failure Processes in Unidirectional Composites. Part 1: Failure and Critical Damage State Induced by Increasing Tensile Loading. Appl Compos Mater 22, 119–140 (2015). https://doi.org/10.1007/s10443-014-9397-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-014-9397-0

Keywords

Navigation