Skip to main content
Log in

Interfacial debonding and fibre pull-out stresses

Part I Critical comparison of existing theories with experiments

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two current theories [11, 17] of interfacial debonding and fibre pull-out, which have been developed on the basis of fracture mechanics and shear strength criteria, respectively, are critically compared with experimental results of several composite systems. From the plots of partial debond stress, σ pd , as a function of debond length, three different cases of the interfacial debond process can be identified, i.e. totally unstable, partially stable and totally stable. The stability of the debond process is governed not only by elastic constants, relative volume of fibre and matrix but more importantly by the nature of bonding at the interface and embedded fibre length,L. It is found that for the epoxy-based matrix composite systems, Gaoet al.'s model [17] predicts the trend of maximum debond stress, σ *d , very well for longL, but it always overestimates σ *d for very shortL. In contrast, Hsueh's model [11] has the capability to predict σ *d for shortL, but it often needs significant adjustment to the bond shear strength for a better fit of the experimental results for longL. For a ceramic-based matrix composite, σ *d predicted by the two models agree exceptionally well with experiment over almost the whole range ofL, a reflection that the assumed stable debond process in theory is actually achieved in practice. With respect to the initial frictional pull-out stress, σf, the agreement between the two theories and experiments is excellent for all range ofL and all composite systems, suggesting that the solutions for σf proposed by the two models are essentially identical. Although Gaoet al.'s model has the advantage to determine accurately the important interfacial properties such as residual clamping stress,q o, and coefficient of friction, μ, it needs some modifications if accurate predictions of σ *d are sought for very shortL. These include varying interfacial fracture toughness,G ic with debond crack growth, unstable debonding for very shortL and inclusion of shear deformation in the matrix for the evaluation ofG ic and fibre stress distribution. Hsueh's model may also be improved to obtain a better solution by including the effect of matrix axial stress existing at the debonded region on the frictionless debond stress, σo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Kim andY. W. Mai,Comp. Sci. Tech. 41 (1991) 333.

    Google Scholar 

  2. A. Kelly andW. R. Tyson,J. Mech. Phys. Solids 13 (1965) 329.

    Google Scholar 

  3. A. Kelly,Proc. R. Soc. Lond. A282 (1964) 63.

    Google Scholar 

  4. B. Miller, P. Muri andL. Rebenfeld,Comp. Sci. Tech. 28 (1987) 17.

    Google Scholar 

  5. M. K. Tse,SAMPE J. 21 (1985) 11.

    Google Scholar 

  6. H. L. Cox,Brit. J. Appl. Phys. 3 (1952) 72.

    Google Scholar 

  7. L. B. Greszczuk, “Interfaces in Composites”, ASTM STP 452 (American Society for Testing and Materials, Philadelphia, 1969) p. 42.

    Google Scholar 

  8. A. Takaku andR. G. C. Arridge,J. Phys. D Appl. Phys. 6 (1973) 2038.

    Google Scholar 

  9. P. Lawrence,J. Mater. Sci. 7 (1972) 1.

    Google Scholar 

  10. V. Laws, P. Lawrence andR. W. Nurse,J. Phys. D Appl. Phys. 6 (1973) 523.

    Google Scholar 

  11. C. H. Hsueh,Mater. Sci. Engng A123 (1990) 1.

    Google Scholar 

  12. Idem, ibid. A125 (1990) 67.

    Google Scholar 

  13. C. Gurney andJ. Hunt,Proc. R. Soc. Lond. A 299 (1967) 508.

    Google Scholar 

  14. J. O. Outwater andM. C. Murphy, in “Proceedings of the 24th Conference on SPI” (1969) Paper 11C.

  15. H. Stang andS. P. Shah,J. Mater. Sci. 21 (1986) 953.

    Google Scholar 

  16. J. K. Wells andP. W. R. Beaumont,ibid. 20 (1985) 1275.

    Google Scholar 

  17. Y. C. Gao, Y. W. Mai andB. Cotterell,J. Appl. Math. Phys. (ZAMP) 39 (1988) 550.

    Google Scholar 

  18. C. Atkinson, J. Avila, E. Betz andR. E. Smelser,J. Mech. Phys. Solids 30 (1982) 97.

    Google Scholar 

  19. C. K. Y. Leung andV. C. Li,Composites 21 (1990) 305.

    Google Scholar 

  20. Idem,J. Mater. Sci. (1992) 305 in press.

  21. C. H. Hsueh,J. Mater Sci. Lett. 7 (1988) 497.

    Google Scholar 

  22. E. P. Buttler, E. R. Fuller Jr andH. M. Chan,Mater. Res. Soc. Symp. Proc. 170 (1990) 17.

    Google Scholar 

  23. J. K. Kim, C. Baillie andY. W. Mai,Scripta Metall. Mater. 25 (1991) 315.

    Google Scholar 

  24. V. M. Karbhari andD. J. Wilkins,ibid. 24 (1990) 1197.

    Google Scholar 

  25. J. D. Bright, S. Danchaivijit andD. K. Shetty,J. Amer. Ceram. Soc. 74 (1991) 115.

    Google Scholar 

  26. C. Cazeneuve, J. E. Castle andJ. F. Watts,J. Mater. Sci. 25 (1990) 1902.

    Google Scholar 

  27. P. Denison andF. R. Jones,ibid. 23 (1988) 2153.

    Google Scholar 

  28. J. G. Williams, M. E. Donnellan, M. R. James andW. L. Morris,Mater. Sci. Engng A126 (1990) 305.

    Google Scholar 

  29. T. C. Tsai, A. M. Arocho andL. M. Gause,ibid. A126 (1990) 294.

    Google Scholar 

  30. M. R. Piggott,Polym. Comp. 8 (1987) 291.

    Google Scholar 

  31. G. C. Papanicolaou, G. J. Messinis andS. S. Karakatsanidis,J. Mater. Sci. 24 (1989) 395.

    Google Scholar 

  32. P. Bartos,ibid. 15 (1980) 3122.

    Google Scholar 

  33. M. R. Piggott,Comp. Sci. Tech. 30 (1987) 295.

    Google Scholar 

  34. C. K. Y. Leung andV. C. Li,J. Mater. Sci. Lett. 9 (1991) 1140.

    Google Scholar 

  35. L-M. Zhou, J-K Kim andY-W Mai,J. Mater. Sci. (1992)27, 3155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JK., Baillie, C. & Mai, YW. Interfacial debonding and fibre pull-out stresses. J Mater Sci 27, 3143–3154 (1992). https://doi.org/10.1007/BF01116004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01116004

Keywords

Navigation