Skip to main content
Log in

Interfacial debonding and fibre pull-out stresses

Part II A new model based on the fracture mechanics approach

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An improved analysis has been developed for the interfacial debond stress in a fibre pull-out model based on the concept of fracture mechanics where the debonded region is considered as an interfacial crack and its extension is dependent on a fracture energy criterion being satisfied. By evaluating the partial debond stress, σ pd against debond lengthl, during progressive debonding, instability conditions are derived where the maximum debond stress, σ *d , is determined for different embedded fibre length,L. Comparisons between theory and experimental fibre pullout results on several composite systems show that the present model gives excellent prediction of the maximum debond stress, σ *d , for the whole range ofL including even the very shortL, whereas the previous Gao-Mai-Cotterell model, also developed on the basis of a fracture mechanics approach, always overestimates σ *d for shortL and gives a finite value forL=0. The initial frictional pull-out stress, σfr, after complete debonding predicted by the present model is basically the same as the Gao-Mai-Cotterell model and agrees well with experiments. The implications of stress distributions in the constituents for different composite systems are discussed on the basis of the proposed debond criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Kim, C. Baillie andY. W. Mai,J. Mater. Sci. (1991)27, 3143.

    Google Scholar 

  2. Y. C. Gao, Y. W. Mai andB. Cotterell,J. Appl. Math. Phys. (ZAMP) 39 (1989) 550.

    Google Scholar 

  3. C. H. Hsueh,Mater. Sci. Engng A130 (1990) L11.

    Google Scholar 

  4. Idem., ibid. A123 (1990) 1.

    Google Scholar 

  5. M. R. Piggott,Comp. Sci. Technol. 30 (1987) 295.

    Google Scholar 

  6. L. M. Zhou, J. K. Kim andY. W. Mai,ibid. (1991) in press.

    Google Scholar 

  7. J. W. Hutchinson andH. M. Jensen,Mech. Mater. 9 (1990) 139.

    Google Scholar 

  8. L. B. Freund,Eur. J. Mech. A. (1991) in press.

  9. L. N. McCartney,Proc. R. Soc. Lond. A425 (1989) 215.

    Google Scholar 

  10. J. K. Kim andY. W. Mai,Comp. Sci. Technol. 11 (1991) 333.

    Google Scholar 

  11. L. S. Penn andS. M. Lee,J. Comp. Tech. Res. (JCTRER) 11 (1989), 23.

    Google Scholar 

  12. J. K. Kim, C. Baillie andY. W. Mai,Scripta Metall. Mater. 25 (1991) 315.

    Google Scholar 

  13. E. P. Butler, E. R. Fuller Jr andH. M. Chan,Mater. Res. Soc. Symp. Proc. 170 (1990) 17.

    Google Scholar 

  14. H. F. Wu andC. M. Claypool,J. Mater. Sci. Lett. 10 (1991) 260.

    Google Scholar 

  15. C. Atkinson, J. Avila, E. Betz andR. E. Smelser,J. Mech. Phys. Solids 30 (1982) 97.

    Google Scholar 

  16. C. K. Y. Leung andV. C. Li,J. Mater. Sci. Lett. (1991) in9 (1990) 1140.

    Google Scholar 

  17. B. Budiansky, J. W. Hutchinson andA. G. Evans,J. Mech. Phys. Solids 34 (1986) 167.

    Google Scholar 

  18. C. K. Y. Leung andV. C. Li,Composites 21 (1990) 305.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, LM., Kim, JK. & Mai, YW. Interfacial debonding and fibre pull-out stresses. J Mater Sci 27, 3155–3166 (1992). https://doi.org/10.1007/BF01116005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01116005

Keywords

Navigation