Skip to main content

Role of Enzymes in Deconstruction of Waste Biomass for Sustainable Generation of Value-Added Products

  • Chapter
  • First Online:
Bioprospecting of Enzymes in Industry, Healthcare and Sustainable Environment

Abstract

The enzymes and its utility have increased tremendously over the past decade, as the focus presently is diverting toward the development of technologies that are cyclic in nature. This idea depends on the fact that both the substrate and the end product should be biodegradable and should fit well with the idea of it being recycled and reused. The enzymes are biological molecules when used commercially can solve many issues e.g., agro-residues waste disposal, replacement of synthetic processes to natural more environment reliable processes. The effective utilization of agro-residues in biorefinery has been gaining attention but its application has been restricted due to higher lignin content and expensive chemical treatment. The biological delignification involving xylanase, cellulose, and ligninolytic enzymes is an effective method, cheap and carbon neutral as well. These enzymes have wide utility and with the advancement of techniques i.e., protein engineering has enabled the synthesis of enzymes that are industrially feasible, higher production yield and can tolerate harsh conditions. This has widened the application to the areas which were previously not known and were either not possible due to the restrictions. This chapter focuses on different enzymes, the method involved in the production, and its application in the bio-based economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah A, Hamid H, Christwardana M, Hadiyanto H (2018) Optimization of cellulase production by Aspergillus niger ITBCC L74 with bagasse as substrate using response surface methodology. HAYATI J Biosci 25:115–125

    Article  Google Scholar 

  • Adekunle AE, Zhang C, Guo C, Liu C-Z (2017) Laccase production from Trametes versicolor in solid-state fermentation of steam-exploded pretreated cornstalk. Waste Biomass Valor 8:153–159

    Article  CAS  Google Scholar 

  • Adesioye FA, Makhalanyane TP, Biely P, Cowan DA (2016) Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzym Microb Technol 93:79–91

    Article  CAS  Google Scholar 

  • Agbor VB, Cicek N, Sparling R et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  CAS  PubMed  Google Scholar 

  • Agrawal K, Verma P (2019a) Biodegradation of synthetic dye Alizarin Cyanine Green by yellow laccase producing strain Stropharia sp. ITCC-8422. Biocatal Agric Biotechnol 21:101291

    Article  Google Scholar 

  • Agrawal K, Verma P (2019b) Column bioreactor of immobilized Stropharia sp. ITCC 8422 on natural biomass support of L. cylindrica for biodegradation of anthraquinone violet R. Bioresour Technol Rep 8:100345

    Google Scholar 

  • Agrawal K, Verma P (2020a) Potential removal of hazardous wastes using white laccase purified by ATPS--PEG--salt system: an operational study. Environ Technol Innov 17:100556

    Google Scholar 

  • Agrawal K, Verma P (2020b) Production optimization of yellow laccase from Stropharia sp. ITCC 8422 and enzyme-mediated depolymerization and hydrolysis of lignocellulosic biomass for biorefinery application. Biomass Conversion Biorefinery. https://doi.org/10.1007/s13399-020-00869-w

  • Agrawal K, Shankar J, Kumar R, Verma P (2020a) Insight into multicopper oxidase laccase from Myrothecium verrucaria ITCC-8447: a case study using in silico and experimental analysis. J Environ Sci Health B:1–13

    Google Scholar 

  • Agrawal K, Shankar J, Verma P (2020b) Multicopper oxidase (MCO) laccase from Stropharia sp. ITCC-8422: an apparent authentication using integrated experimental and in silico analysis. 3 Biotech 10(9):1–18

    Article  Google Scholar 

  • Agrawal K, Bhardwaj N, Kumar B et al (2019) Process optimization, purification and characterization of alkaline stable white laccase from Myrothecium verrucaria ITCC-8447 and its application in delignification of agroresidues. Int J Biol Macromol 125:1042–1055. https://doi.org/10.1016/j.ijbiomac.2018.12.108

    Article  CAS  PubMed  Google Scholar 

  • Ali SS, Wu J, Xie R et al (2017) Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis. PLoS One 12:e0181141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ang SK, Shaza EM, Adibah Y et al (2013) Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem 48:1293–1302. https://doi.org/10.1016/j.procbio.2013.06.019

    Article  CAS  Google Scholar 

  • Anish R, Rahman MS, Rao M (2007) Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnol Bioeng 96:48–56

    Article  CAS  PubMed  Google Scholar 

  • Annamalai N, Thavasi R, Jayalakshmi S, Balasubramanian T (2009) Thermostable and alkaline tolerant xylanase production by Bacillus subtilis isolated form marine environment. Indian J Biotechnol 8:291–297

    CAS  Google Scholar 

  • Annamalai N, Rajeswari MV, Balasubramanian T (2016) Thermostable and alkaline cellulases from marine sources. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 91–98

    Chapter  Google Scholar 

  • Antoine AA, Jacqueline D, Thonart P (2010) Xylanase production by Penicillium canescens on soya oil cake in solid-state fermentation. Appl Biochem Biotechnol 160:50–62

    Article  CAS  PubMed  Google Scholar 

  • Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7:163–173

    Article  CAS  Google Scholar 

  • Asmadi M, Kawamoto H, Saka S (2017) Characteristics of softwood and hardwood pyrolysis in an ampoule reactor. J Anal Appl Pyrolysis 124:523–535

    Article  CAS  Google Scholar 

  • Baborová P, Möder M, Baldrian P et al (2006) Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res Microbiol 157:248–253

    Article  PubMed  CAS  Google Scholar 

  • Battan B, Dhiman SS, Ahlawat S et al (2012) Application of thermostable xylanase of Bacillus pumilus in textile processing. Indian J Microbiol 52:222–229

    Article  CAS  PubMed  Google Scholar 

  • Bayramouglu G, Arica MY (2008) Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads. J Hazard Mater 156:148–155

    Article  CAS  Google Scholar 

  • Behera BC, Sethi BK, Mishra RR et al (2017) Microbial cellulases--diversity & biotechnology with reference to mangrove environment: a review. J Genet Eng Biotechnol 15:197–210

    Article  CAS  PubMed  Google Scholar 

  • Bermek H, Eriksson K (2009) Lignin, lignocellulose, ligninase. In: Encyclopedia of microbiology. Elsevier, Amsterdam, pp 373–384

    Google Scholar 

  • Bhardwaj N, Chanda K, Kumar B et al (2017) Statistical optimization of nutritional and physical parameters for xylanase production from newly isolated Aspergillus oryzae LC1 and its application on hydrolysis of lignocellulosic agro-residues. Bioresources 12:8519–8538

    CAS  Google Scholar 

  • Bhardwaj N, Verma VK, Chaturvedi V, Verma P (2018) GH10 XynF1 and Xyn11A: the predominant xylanase identified in the profiling of extracellular proteome of Aspergillus oryzae LC1. Ann Microbiol 68(11):731–742

    Article  Google Scholar 

  • Bhardwaj N, Kumar B, Agarwal K et al (2019a) Purification and characterization of a thermo-acid/alkali stable xylanases from Aspergillus oryzae LC1 and its application in Xylo-oligosaccharides production from lignocellulosic agricultural wastes. Int J Biol Macromol 122:1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj N, Kumar B, Verma P (2019b) A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresour Bioprocess. https://doi.org/10.1186/s40643-019-0263-7. In Press

  • Bhardwaj N, Kumar B, Agrawal K, Verma P (2020) Bioconversion of rice straw by synergistic effect of in-house produced ligno-hemicellulolytic enzymes for enhanced bioethanol production. Bioresource Technol Rep 10:100352

    Article  Google Scholar 

  • Bhunia A, Durani S, Wangikar PP (2001) Horseradish peroxidase catalyzed degradation of industrially important dyes. Biotechnol Bioeng 72:562–567

    Article  CAS  PubMed  Google Scholar 

  • Biely P, MacKenzie CR, Puls J, Schneider H (1986) Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Nat Biotechnol 4:731

    Article  CAS  Google Scholar 

  • Binod P, Gnansounou E, Sindhu R, Pandey A (2018) Enzymes for second generation biofuels: recent developments and future perspectives. Bioresour Technol Rep 5:317–325

    Article  Google Scholar 

  • Bugg TDH, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400

    Article  CAS  PubMed  Google Scholar 

  • de Cassia Pereira J, Paganini Marques N, Rodrigues A et al (2015) Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. J Appl Microbiol 118:928–939

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value-added products. 3 Biotech 3:415–431

    Article  PubMed  PubMed Central  Google Scholar 

  • Chávez R, Bull P, Eyzaguirre J (2006) The xylanolytic enzyme system from the genus Penicillium. J Biotechnol 123:413–433

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Li H, Peng A, Gao Y (2014) Oxidation of polycyclic aromatic hydrocarbons by horseradish peroxidase in water containing an organic cosolvent. Environ Sci Pollut Res 21:10696–10705

    Article  CAS  Google Scholar 

  • Cheng J, Yu SM, Zuo P (2006) Horseradish peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater. Water Res 40:283–290

    Article  CAS  PubMed  Google Scholar 

  • Choct M (2006) Enzymes for the feed industry: past, present and future. Worlds Poult Sci J 62:5–16

    Article  Google Scholar 

  • Choinowski T, Blodig W, Winterhalter KH, Piontek K (1999) The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxy group on the Cβ of tryptophan 171: a novel radical site formed during the redox cycle1. J Mol Biol 286:809–827

    Article  CAS  PubMed  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  PubMed  Google Scholar 

  • Dai X-J, LiU M-Q, Jin H-X, Jing M-Y (2011) Optimization of solid-state fermentation of Aspergillus niger JL-15 for xylanase production and xylooligosaccharides preparation. Czech J Food Sci 29:557–567

    Article  CAS  Google Scholar 

  • Davidi L, Moraïis S, Artzi L et al (2016) Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome. Proc Natl Acad Sci 113:10854–10859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102:6065–6072

    Article  CAS  PubMed  Google Scholar 

  • Dias AA, Sampaio A, Bezerra RM (2007) Environmental applications of fungal and plant systems: decolourisation of textile wastewater and related dyestuffs. In: Environmental bioremediation technologies. Springer, Berlin, pp 445–463

    Chapter  Google Scholar 

  • Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2:541

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Meinhardt SW, Schwarz PB (2012) Isolation and characterization of two endoxylanases from Fusarium graminearum. J Agric Food Chem 60:2538–2545

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos AB, Cervantes FJ, Van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385

    Article  CAS  PubMed  Google Scholar 

  • Elisashvili V, Kachlishvili E (2009) Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J Biotechnol 144:37–42

    Article  CAS  PubMed  Google Scholar 

  • Elisashvili V, Kachlishvili E, Asatiani MD (2018) Efficient production of lignin-modifying enzymes and phenolics removal in submerged fermentation of olive mill by-products by white-rot basidiomycetes. Int Biodeterior Biodegradation 134:39–47

    Article  CAS  Google Scholar 

  • Frederick WJ Jr (2012) Thermochemical conversion of biomass to liquid fuels and chemicals. In: Integrated biorefineries. CRC Press, Boca Raton, pp 540–589

    Google Scholar 

  • Fujian X, Hongzhang C, Zuohu L (2001) Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour Technol 80:149–151

    Article  CAS  PubMed  Google Scholar 

  • Ghosh P, Ghosh U (2017) Statistical optimization of laccase production by Aspergillus flavus PUF5 through submerged fermentation using agro-waste as cheap substrate. Acta Biol Szeged 61:25–33

    Google Scholar 

  • Godfrey T, West S (1996) Textiles. In: Industrial enzymology. Macmillan, London, pp 360–371

    Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    Article  CAS  PubMed  Google Scholar 

  • Guha SK, Kobayashi H, Fukuoka A (2010) Conversion of cellulose to sugars. In: Crocker M (ed) Thermochemical conversion of biomass to liquid fuels and chemicals, vol 1, pp 344–364

    Chapter  Google Scholar 

  • Guimarães BG, Souchon H, Lytle BL et al (2002) The crystal structure and catalytic mechanism of cellobiohydrolase celS, the major enzymatic component of the Clostridium thermocellum cellulosome. J Mol Biol 320:587–596. https://doi.org/10.1016/S0022-2836(02)00497-7

    Article  CAS  PubMed  Google Scholar 

  • Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355

    Article  CAS  PubMed  Google Scholar 

  • Hasan F, Shah AA, Javed S, Hameed A (2010) Enzymes used in detergents: lipases. Afr J Biotechnol 9:4836–4844

    CAS  Google Scholar 

  • Hofrichter M (2002) Lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30:454–466

    Article  CAS  Google Scholar 

  • Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186

    Article  PubMed  CAS  Google Scholar 

  • Hoopes JT, Dean JFD (2004) Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiol Biochem 42:27–33

    Article  CAS  PubMed  Google Scholar 

  • Hunt CJ, Antonopoulou I, Tanksale A et al (2017) Insights into substrate binding of ferulic acid esterases by arabinose and methyl hydroxycinnamate esters and molecular docking. Sci Rep 7:17315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imran M, Anwar Z, Irshad M et al (2016) Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry : a review. Adv Enzyme Res 4:44–55

    Article  CAS  Google Scholar 

  • Irfan M, Nadeem M, Syed Q, Baig S (2012) Effect of medium composition on xylanase production by Bacillus subtilis using various agricultural wastes. J Agric Environ Sci 4:2

    Google Scholar 

  • Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559

    Article  CAS  Google Scholar 

  • Jordan DB, Wagschal K, Grigorescu AA, Braker JD (2013) Highly active β-xylosidases of glycoside hydrolase family 43 operating on natural and artificial substrates. Appl Microbiol Biotechnol 97:4415–4428

    Article  CAS  PubMed  Google Scholar 

  • Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sust Energ Rev 33:188–203. https://doi.org/10.1016/j.rser.2014.01.077

    Article  CAS  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:805187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasana RC, Gulati A (2011) Cellulases from psychrophilic microorganisms: a review. J Basic Microbiol 51:572–579

    Article  CAS  PubMed  Google Scholar 

  • Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44:77–87

    Article  CAS  PubMed  Google Scholar 

  • Khan MN, Luna IZ, Islam MM et al (2016) Cellulase in waste management applications. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 237–256

    Chapter  Google Scholar 

  • Khindaria A, Yamazaki I, Aust SD (1996) Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry 35:6418–6424

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Yang J, Park SY et al (2019) Cellulase recycling in high-solids enzymatic hydrolysis of pretreated empty fruit bunches. Biotechnol Biofuels 12:138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351

    Article  CAS  PubMed  Google Scholar 

  • Köller G, Möder M, Czihal K (2000) Peroxidative degradation of selected PCB: a mechanistic study. Chemosphere 41:1827–1834

    Article  PubMed  Google Scholar 

  • Kubicek CP (1992) The cellulase proteins of Trichoderma reesei: structure, multiplicity, mode of action and regulation of formation. In: Enzymes and products from bacteria fungi and plant cells. Springer, Berlin, pp 1–27

    Google Scholar 

  • Kudanga T, Le Roes-Hill M (2014) Laccase applications in biofuels production: current status and future prospects. ApplMicrobiol Biotechnol 98:6525–6542

    CAS  Google Scholar 

  • Kuhad RC, Singh A, Eriksson K-EL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. In: Biotechnology in the pulp and paper industry. Springer, Berlin, pp 45–125

    Chapter  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:1–10

    Article  CAS  Google Scholar 

  • Kuhad RC, Deswal D, Sharma S et al (2016) Revisiting cellulase production and redefining current strategies based on major challenges. Renew Sust Energ Rev 55:249–272

    Article  CAS  Google Scholar 

  • Kumar V, Shukla P (2016) Functional aspects of xylanases toward industrial applications. In: Frontier discoveries and innovations in interdisciplinary microbiology. Springer, Berlin, pp 157–165

    Chapter  Google Scholar 

  • Kumar V, Shukla P (2018) Extracellular xylanase production from T. lanuginosus VAPS24 at pilot scale and thermostability enhancement by immobilization. Process Biochem 71:53–60

    Article  CAS  Google Scholar 

  • Kumar B, Verma P (2020a) Application of hydrolytic enzymes in biorefinery and its future prospects. In: Microbial strategies for techno-economic biofuel production. Springer, Singapore, pp 59–83

    Chapter  Google Scholar 

  • Kumar B, Verma P (2020b) Enzyme mediated multi-product process: a concept of bio-based refinery. Ind Crop Prod 154:112607

    Google Scholar 

  • Kumar B, Bhardwaj N, Alam A et al (2018) Production, purification and characterization of an acid/alkali and thermo tolerant cellulase from Schizophyllum commune NAIMCC - F - 03379 and its application in hydrolysis of lignocellulosic wastes. AMB Express 8:1–16

    Article  CAS  Google Scholar 

  • Kumar B, Bhardwaj N, Agrawal K, Chaturvedi V, Verma P (2020) Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process Technol 199:106244

    Google Scholar 

  • Lasrado LD, Gudipati M (2013) Purification and characterization of β-D-xylosidase from Lactobacillus brevis grown on xylo-oligosaccharides. Carbohydr Polym 92:1978–1983

    Article  CAS  PubMed  Google Scholar 

  • Leggio LL, Larsen S (2002) The 1.62 Å structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. FEBS Lett 523:103–108

    Article  PubMed  Google Scholar 

  • Legodi LM, La Grange D, van Rensburg EL, Ncube I (2019) Isolation of cellulose degrading fungi from decaying banana pseudostem and Strelitzia alba. Enzyme Res 2019:1390890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Zheng Y (2017) Lignin-enzyme interaction: mechanism, mitigation approach, modeling, and research prospects. Biotechnol Adv 35:466–489

    Article  CAS  PubMed  Google Scholar 

  • Li S, Yang X, Yang S et al (2012) Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2:e201209017

    Article  PubMed  PubMed Central  Google Scholar 

  • Liab K, Azadi P, Collins R et al (2000) Relationships between activities of xylanases and xylan structures. Enzym Microb Technol 27:89–94

    Article  CAS  Google Scholar 

  • Liang C, Xue Y, Fioroni M et al (2011) Cloning and characterization of a thermostable and halo-tolerant endoglucanase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol 89:315–326

    Article  CAS  PubMed  Google Scholar 

  • Liao H, Sun S, Wang P et al (2014) A new acidophilic endo-β-1, 4-xylanase from Penicillium oxalicum: cloning, purification, and insights into the influence of metal ions on xylanase activity. J Ind Microbiol Biotechnol 41:1071–1083

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Liu J, Zheng P et al (2019) Promoting enzymatic hydrolysis of lignocellulosic biomass by inexpensive soy protein. Biotechnol Biofuels 12:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandels M, Weber J, Parizek R (1971) Enhanced cellulase production by a mutant of Trichoderma viride. Appl Microbiol 21:152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzym Microb Technol 30:425–444

    Article  Google Scholar 

  • Martínez AT, Speranza M, Ruiz-Dueñas FJ et al (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    PubMed  Google Scholar 

  • Minussi RC, Pastore GM, Durán N (2007) Laccase induction in fungi and laccase/N--OH mediator systems applied in paper mill effluent. Bioresour Technol 98:158–164

    Article  CAS  PubMed  Google Scholar 

  • Mojsov KD (2014) Biotechnological applications of laccases in the textile industry. Savrem Tehnol 3:76–79

    Article  Google Scholar 

  • Moreira LRS et al (2016) Insights into the mechanism of enzymatic hydrolysis of xylan. Appl Microbiol Biotechnol 100:5205–5214

    Article  CAS  PubMed  Google Scholar 

  • Morris P, Dalton S, Langdon T et al (2017) Expression of a fungal ferulic acid esterase in suspension cultures of tall fescue (Festuca arundinacea) decreases cell wall feruloylation and increases rates of cell wall digestion. Plant Cell Tissue Organ Cult 129:181–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mussatto SI, Dragone GM (2016) Biomass pretreatment, biorefineries, and potential products for a bioeconomy development. In: Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier, Amsterdam, pp 1–22

    Google Scholar 

  • Nakamoto S, Machida N (1992) Phenol removal from aqueous solutions by peroxidase-catalyzed reaction using additives. Water Res 26:49–54

    Article  CAS  Google Scholar 

  • Nakashima K, Yamaguchi K, Taniguchi N et al (2011) Direct bioethanol production from cellulose by the combination of cellulase-displaying yeast and ionic liquid pretreatment. Green Chem 13:2948–2953

    Article  CAS  Google Scholar 

  • Narra M, Dixit G, Divecha J et al (2014) Production, purification and characterization of a novel GH 12 family endoglucanase from Aspergillus terreus and its application in enzymatic degradation of delignified rice straw. Int Biodeterior Biodegradation 88:150–161

    Article  CAS  Google Scholar 

  • Neelkant KS, Shankar K, Jayalakshmi SK, Sreeramulu K (2019) Optimization of conditions for the production of lignocellulolytic enzymes by Sphingobacterium sp. ksn-11 utilizing agro-wastes under submerged condition. Prep Biochem Biotechnol 49:927–934

    Article  CAS  PubMed  Google Scholar 

  • Ni J, Tokuda G (2013) Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 31:838–850

    Article  CAS  PubMed  Google Scholar 

  • Novy V, Nielsen F, Seiboth B, Nidetzky B (2019) The influence of feedstock characteristics on enzyme production in Trichoderma reesei: a review on productivity, gene regulation and secretion profiles. Biotechnol Biofuels 12:238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olajuyigbe FM, Ogunyewo OA (2016) Enhanced production and physicochemical properties of thermostable crude cellulase from Sporothrix carnis grown on corn cob. Biocatal Agric Biotechnol 7:110–117. https://doi.org/10.1016/j.bcab.2016.05.012

    Article  Google Scholar 

  • Oliveira SF, da Luz JMR, Kasuya MCM et al (2018) Enzymatic extract containing lignin peroxidase immobilized on carbon nanotubes: potential biocatalyst in dye decolourization. Saudi J Biol Sci 25:651–659

    Article  CAS  PubMed  Google Scholar 

  • Olsen HS, Falholt P (1998) The role of enzymes in modern detergency. J Surfactant Deterg 1:555–567

    Article  CAS  Google Scholar 

  • Perkins HR (2012) Microbial cell walls and membranes. Springer, Berlin

    Google Scholar 

  • Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30--thirty years of strain improvement. Microbiology 158:58–68

    Article  CAS  PubMed  Google Scholar 

  • Piontek K, Glumoff T, Winterhalter K (1993) Low pH crystal structure of glycosylated lignin peroxidase from Phanerochaete chrysosporium at 2.5 Å resolution. FEBS Lett 315:119–124

    Article  CAS  PubMed  Google Scholar 

  • Plácido J, Imam T, Capareda S (2013) Evaluation of ligninolytic enzymes, ultrasonication and liquid hot water as pretreatments for bioethanol production from cotton gin trash. Bioresour Technol 139:203–208

    Article  PubMed  CAS  Google Scholar 

  • Pokhrel S, Yoo YJ (2009) Designing active site pKa values to shift optimum pH of Bacillus circulans xylanase. New Biotechnol 25:S126

    Article  Google Scholar 

  • Polak J, Jarosz-Wilkolazka A (2012) Fungal laccases as green catalysts for dye synthesis. Process Biochem 47:1295–1307

    Article  CAS  Google Scholar 

  • Polizeli M, Rizzatti ACS, Monti R et al (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Prajapati AS, Pawar VA, Panchal KJ et al (2018) Effects of substrate binding site residue substitutions of xynA from Bacillus amyloliquefaciens on substrate specificity. BMC Biotechnol 18:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajak RC, Banerjee R (2016) Enzyme mediated biomass pretreatment and hydrolysis: a biotechnological venture towards bioethanol production. RSC Adv 6:61301–61311

    Article  Google Scholar 

  • Ralph J, Brunow G, Harris PJ et al (2008) Lignification: are lignins biosynthesized via simple combinatorial chemistry or via proteinaceous control and template replication. Recent Adv Polyphen Res 1:36–66

    Article  CAS  Google Scholar 

  • Ravindran R, Jaiswal AK (2016) Microbial enzyme production using lignocellulosic food industry wastes as feedstock: a review. Bioengineering 3:30

    Article  PubMed Central  CAS  Google Scholar 

  • Rees HC, Grant S, Jones B et al (2003) Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles 7:415–421

    Article  CAS  PubMed  Google Scholar 

  • Rios-Fránquez FJ, Rojas-Rejón ÓA, Escamilla-Alvarado C (2019) Microbial enzyme applications in bioethanol producing biorefineries: overview. In: Ray R, Ramachandran S (eds) In bioethanol production from food crops sustainable sources, interventions, and challenges. Elsevier, Amsterdam, pp 249–266

    Chapter  Google Scholar 

  • Rodriguez E, Nuero O, Guillén F et al (2004) Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species: the role of laccase and versatile peroxidase. Soil Biol Biochem 36:909–916

    Article  CAS  Google Scholar 

  • Rosmine E, Sainjan NC, Silvester R et al (2017) Statistical optimisation of xylanase production by estuarine Streptomyces sp. and its application in clarification of fruit juice. J Genet Eng Biotechnol 15:393–401

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Dueñas FJ, Martinez ÁT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saha BC (2002) Production, purification and properties of xylanase from a newly isolated Fusarium proliferatum. Process Biochem 37:1279–1284

    Article  CAS  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  PubMed  CAS  Google Scholar 

  • Sanz-Aparicio J, Hermoso JA, Martinez-Ripoll M et al (1998) Crystal structure of β-glucosidase a from Bacillus polymyxa: insights into the catalytic activity in family 1 glycosyl hydrolases1. J Mol Biol 275:491–502

    Article  CAS  PubMed  Google Scholar 

  • Saqib AAN, Hassan M, Khan NF, Baig S (2010) Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF). Process Biochem 45:641–646

    Article  CAS  Google Scholar 

  • Schäfer T, Kirk O, Borchert TV et al. (2005) Enzymes for technical applications. Biopolym Online Biol Chem Biotechnol Appl 557-617

    Google Scholar 

  • Schimpf U, Schulz R (2018) Industrial by-products from white-rot fungi production. Part II: application in anaerobic digestion for enzymatic treatment of hay and straw. Process Biochem 76:142–154

    Article  CAS  Google Scholar 

  • Semenova MV, Volkov PV, Rozhkova AM et al (2018) Cloning, isolation, and properties of a new homologous Exoarabinase from the Penicillium canescens fungus. Appl Biochem Microbiol 54:387–395

    Article  CAS  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Gupta V, Khan M et al (2017) Flavonoid-rich agro-industrial residues for enhanced bacterial laccase production by submerged and solid-state fermentation. 3 Biotech 7:200

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Madlala AM, Prior BA (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 27:3–16

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kaur A, Patra AK, Mahajan R (2018a) A sustainable and green process for scouring of cotton fabrics using xylano-pectinolytic synergism: switching from noxious chemicals to eco-friendly catalysts. 3 Biotech 8:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh N, Puri M, Tuli DK et al (2018b) Bioethanol production by a xylan fermenting thermophilic isolate Clostridium strain DBT-IOC-DC21. Anaerobe 51:89–98

    Article  CAS  PubMed  Google Scholar 

  • Singhania RR, Adsul M, Pandey A, Patel AK (2017) Cellulases. In: Ashok Pandey A, Negi S, Soccol RR (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam

    Google Scholar 

  • Singla A, Paroda S, Dhamija SS et al (2012) Bioethanol production from xylose: problems and possibilities. J Biofuels 3(1):17

    Article  Google Scholar 

  • Sporck D, Reinoso FAM, Rencoret J et al (2017) Xylan extraction from pretreated sugarcane bagasse using alkaline and enzymatic approaches. Biotechnol Biofuels 10:296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su Y, Zhang X, Hou Z et al (2011) Improvement of xylanase production by thermophilic fungus Thermomyces lanuginosus SDYKY-1 using response surface methodology. New Biotechnol 28:40–46

    Article  CAS  Google Scholar 

  • Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Wen F, Si T et al (2012) Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered mini-hemicellulosome. Appl Environ Microbiol 78:3837–3845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1994) The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-a resolution. J Biol Chem 269:32759–32767

    Article  CAS  PubMed  Google Scholar 

  • Téllez-Téllez M, Fernández FJ, Montiel-González AM et al (2008) Growth and laccase production by Pleurotus ostreatus in submerged and solid-state fermentation. Appl Microbiol Biotechnol 81:675

    Article  PubMed  CAS  Google Scholar 

  • Terrasan CRF, Guisan JM, Carmona EC (2016) Xylanase and β-xylosidase from Penicillium janczewskii: purification, characterization and hydrolysis of substrates. Electron J Biotechnol 23:54–62

    Article  Google Scholar 

  • Thirugnanasambandham K, Sivakumar V (2015) Enzymatic catalysis treatment method of meat industry wastewater using lacasse. J Environ Heal Sci Eng 13:86

    Article  CAS  Google Scholar 

  • Uday USP, Choudhury P, Bandyopadhyay TK, Bhunia B (2016) Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int J Biol Macromol 82:1041–1054

    Article  CAS  PubMed  Google Scholar 

  • Vasconcellos VM, Tardioli PW, Giordano RLC, Farinas CS (2015) Production efficiency versus thermostability of (hemi)cellulolytic enzymatic cocktails from different cultivation systems. Process Biochem 50:1701–1709

    Google Scholar 

  • Verma P, Madamwar D (2005) Decolorization of azo dyes using Basidiomycete strain PV 002. World J Microbiol Biotechnol 21:481–485

    Article  CAS  Google Scholar 

  • Violot S, Aghajari N, Czjzek M et al (2005) Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J Mol Biol 348:1211–1224

    Article  CAS  PubMed  Google Scholar 

  • Virk AP, Sharma P, Capalash N (2012) Use of laccase in pulp and paper industry. Biotechnol Prog 28:21–32

    Article  CAS  PubMed  Google Scholar 

  • Vitcosque GL, Fonseca RF, Rodriguez-Zúñiga UF et al (2012) Production of biomass-degrading multienzyme complexes under solid-state fermentation of soybean meal using a bioreactor. Enzyme Res 2012:248983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner AO, Lackner N, Mutschlechner M et al (2018) Biological pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production. Energies 11:1797. https://doi.org/10.3390/en11071797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins D, Nuruddin M, Hosur M et al (2015) Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4:26–32

    Article  CAS  Google Scholar 

  • Yan R, Vuong TV, Wang W, Master ER (2017) Action of a GH115 α-glucuronidase from Amphibacillus xylanus at alkaline condition promotes release of 4-O-methylglucopyranosyluronic acid from glucuronoxylan and arabinoglucuronoxylan. Enzym Microb Technol 104:22–28

    Article  CAS  Google Scholar 

  • Yanase S, Yamada R, Kaneko S et al (2010) Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnol J 5:449–455

    Article  CAS  PubMed  Google Scholar 

  • Zhanga F, Bunterngsookc B, Lia J-X et al (2019) Regulation and production of lignocellulolytic enzymes from Trichoderma reesei for biofuels production. Adv Bioenergy 4:79

    Article  CAS  Google Scholar 

  • Zhao J, Shi P, Li Z et al (2012) Two neutral thermostable cellulases from Phialophora sp. G5 act synergistically in the hydrolysis of filter paper. Bioresour Technol 121:404–410

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

PV is thankful to DBT (Grant No.BT/304/NE/TBP/2012; Grant No.BT/PR7333/PBD/26/373/.

2012) and Central University of Rajasthan for laboratory and library facilities. NB acknowledges University Grants Commission for providing Non-NET and Rajiv Gandhi National Fellowship respectively for the doctoral studies. BK acknowledges Jawaharlal Nehru Memorial Fund, New Delhi, CSIR-SRF for providing funding for Doctoral Studies.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

All the authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhardwaj, N., Agrawal, K., Kumar, B., Verma, P. (2021). Role of Enzymes in Deconstruction of Waste Biomass for Sustainable Generation of Value-Added Products. In: Thatoi, H., Mohapatra, S., Das, S.K. (eds) Bioprospecting of Enzymes in Industry, Healthcare and Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-33-4195-1_11

Download citation

Publish with us

Policies and ethics