Skip to main content

Physiology and Molecular Biology of Abiotic Stress Tolerance in Legumes

  • Chapter
  • First Online:
Legumes: Physiology and Molecular Biology of Abiotic Stress Tolerance

Abstract

Agricultural productivity in legumes is hampered due to several abiotic stresses, including extreme temperatures, salinity, flood, drought, heavy metals, ultraviolet radiation, and nutrient deficiencies. Generally, it is empathized that legumes are sensitive to abiotic stresses, and abiotic stresses negatively influence the plant survival and agricultural productivity. Over a decade, advances in crop physiology and genetics and scientific developments in omics such as genomics, transcriptomics, proteomics, lipidomics, metabolomics, and epigenomics have substantially enhanced our understanding of crop response to these stresses. To explore the underlying complex multilayered abiotic tolerance mechanism, a comprehensive understanding of abiotic stress, especially molecular-physiological strategies, is essential for breeding involving abiotic stress tolerance. This chapter addresses the diverse abiotic stresses and their management to increase the agricultural productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ, Tran L-SP (2017) The “STAY-GREEN” trait and phytohormone signaling networks in plants under heat stress. Plant Cell Rep 36(7):1009–1025

    Article  CAS  Google Scholar 

  • Adnane B, Mainassara ZA, Mohamed F, Mohamed L, Jean-Jacques D, Rim TM, Georg C (2015) Physiological and molecular aspects of tolerance to environmental constraints in grain and forage legumes. Int J Mol Sci 16(8):18976–19008

    Article  CAS  Google Scholar 

  • Al Hassan M, Chaura J, Donat-Torres MP, Boscaiu M, Vicente O (2017) Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants 9(2):plx009

    Article  Google Scholar 

  • Alam I, Sharmin SA, Kim K-H, Yang JK, Choi MS, Lee B-H (2010) Proteome analysis of soybean roots subjected to short-term drought stress. Plant Soil 333(1):491–505

    Article  CAS  Google Scholar 

  • Almeida J, Perez-Fons L, Fraser PD (2021) A transcriptomic, metabolomic and cellular approach to the physiological adaptation of tomato fruit to high temperature. Plant Cell Environ 44(7):2211–2229

    Article  CAS  Google Scholar 

  • Amede T, Schubert S, Stahr K (2004) Mechanisms of drought resistance in grain legumes I: Osmotic adjustment. SINET Ethiopian J Sci 26(1):37–46

    Article  Google Scholar 

  • Anjum SA, Xie X, Wang L, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032

    Google Scholar 

  • Anjum SA, Ashraf U, Zohaib A, Tanveer M, Naeem M, Ali I, Tabassum T, Nazir U (2017) Growth and development responses of crop plants under drought stress: a review. Zemdirbyste 104(3):267–276

    Article  Google Scholar 

  • Aslam M, Maqbool MA, Cengiz R (2015) Mechanisms of drought resistance. In: Drought stress in maize (Zea mays L.). Springer, New York, pp 19–36

    Chapter  Google Scholar 

  • Bao-Yan AN, Yan LUO, Jia-Rui LI, Wei-Hua Q, Zhang X-S, Xin-Qi GAO (2008) Expression of a vacuolar Na+/H+ antiporter gene of alfalfa enhances salinity tolerance in transgenic Arabidopsis. Acta Agron Sin 34(4):557–564

    Google Scholar 

  • Behnam B, Iuchi S, Fujita M, Fujita Y, Takasaki H, Osakabe Y, Yamaguchi-Shinozaki K, Kobayashi M, Shinozaki K (2013) Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration-inducible transcription. DNA Res 20(4):315–324

    Article  CAS  Google Scholar 

  • Bernal-Vicente A, Cantabella D, Petri C, Hernández JA, Diaz-Vivancos P (2018) The salt-stress response of the transgenic plum line J8-1 and its interaction with the salicylic acid biosynthetic pathway from mandelonitrile. Int J Mol Sci 19(11):3519

    Article  Google Scholar 

  • Bhat KV, Mondal TK, Gaikwad AB, Kole PR, Chandel G, Mohapatra T (2020) Genome-wide identification of drought-responsive miRNAs in grass pea (Lathyrus sativus L.). Plant Gene 21:100210

    Article  CAS  Google Scholar 

  • Bhatnagar S, King C, Purcell L, Ray J (2005) Identification and mapping of quantitative trait loci associated with crop responses to water-deficit stress in soybean [Glycine max (L.) Merr.]. The ASA-CSSA-SSSA international annual meeting poster abstract, 6–10

    Google Scholar 

  • Bielach A, Hrtyan M, Tognetti VB (2017) Plants under stress: involvement of auxin and cytokinin. Int J Mol Sci 18(7):1427

    Article  Google Scholar 

  • Bielsa B, Ávila-Alonso JI, Fernández i Martí Á, Grimplet J, Rubio-Cabetas MJ (2021) Gene expression analysis in cold stress conditions reveals BBX20 and CLO as potential biomarkers for cold tolerance in almond. Horticulturae 7(12):527

    Article  Google Scholar 

  • Blair MW, Galeano CH, Tovar E, Muñoz Torres MC, Castrillón AV, Beebe SE, Rao IM (2012) Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant × susceptible common bean (Phaseolus vulgaris L.) cross. Mol Breed 29(1):71–88

    Article  Google Scholar 

  • Bruning B, van Logtestijn R, Broekman R, de Vos A, González AP, Rozema J (2015) Growth and nitrogen fixation of legumes at increased salinity under field conditions: implications for the use of green manures in saline environments. AoB Plants 7:plv010

    Article  Google Scholar 

  • Bundó M, Coca M (2017) Calcium-dependent protein kinase OsCPK10 mediates both drought tolerance and blast disease resistance in rice plants. J Exp Bot 68(11):2963–2975

    Article  Google Scholar 

  • Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San Segundo B (2014) Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol 165(2):688–704

    Article  CAS  Google Scholar 

  • Cano-Ramirez DL, Carmona-Salazar L, Morales-Cedillo F, Ramírez-Salcedo J, Cahoon EB, Gavilanes-Ruíz M (2021) Plasma membrane fluidity: an environment thermal detector in plants. Cell 10(10):2778

    Article  CAS  Google Scholar 

  • Carmo LST, Martins ACQ, Martins CCC, Passos MAS, Silva LP, Araujo ACG, Brasileiro ACM, Miller RNG, Guimarães PM, Mehta A (2019) Comparative proteomics and gene expression analysis in Arachis duranensis reveal stress response proteins associated to drought tolerance. J Proteomics 192:299–310

    Article  CAS  Google Scholar 

  • Ceccon E (2008) Plant productivity and environment. New For 35(3):443–448

    Google Scholar 

  • Chakrabarty A, Aditya M, Dey N, Banik N, Bhattacharjee S (2016) Antioxidant signaling and redox regulation in drought-and salinity-stressed plants. In: Hossain MA et al (eds) Drought stress tolerance in plants, vol 1. Springer, New York, pp 465–498

    Chapter  Google Scholar 

  • Chakraborty U, Pradhan D (2011) High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments. J Plant Interact 6(1):43–52

    Article  Google Scholar 

  • Chakraborty K, Sairam RK, Bhattacharya RC (2012) Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes. Plant Physiol Biochem 51:90–101

    Article  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought - from genes to the whole plant. Funct Plant Biol 30(3):239–264

    Article  CAS  Google Scholar 

  • Chawla K, Barah P, Kuiper M, Bones AM (2011) Systems biology: a promising tool to study abiotic stress responses. In: Tuteja N, Gill SS, Tuteja R (eds) Omics and plant abiotic stress tolerance. Bentham Publishers, Sharjah, pp 163–172

    Chapter  Google Scholar 

  • Chen H, Chen W, Zhou J, He H, Chen L, Chen H, Deng XW (2012) Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci 193–194:8–17

    Article  Google Scholar 

  • Chen X, Chen G, Li J, Hao X, Tuerxun Z, Chang X, Gao S, Huang Q (2021) A maize calcineurin B-like interacting protein kinase ZmCIPK42 confers salt stress tolerance. Physiol Plant 171(1):161–172

    Article  CAS  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90(5):856–867

    Article  CAS  Google Scholar 

  • Chowdhury J, Karim M, Khaliq Q, Ahmed A, Khan M (2016) Effect of drought stress on gas exchange characteristics of four soybean genotypes. Bangladesh J Agric Res 41(2):195–205

    Article  Google Scholar 

  • Christophe S, Jean-Christophe A, Annabelle L, Alain O, Marion P, Anne-Sophie V (2011) Plant N fluxes and modulation by nitrogen, heat and water stresses: a review based on comparison of legumes and non legume plants. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants–mechanisms and adaptations. Intech Open Access Publisher, Rijeka, pp 79–118

    Google Scholar 

  • Cieśla A, Mituła F, Misztal L, Fedorowicz-Strońska O, Janicka S, Tajdel-Zielińska M, Marczak M, Janicki M, Ludwików A, Sadowski J (2016) A role for barley calcium-dependent protein kinase CPK2a in the response to drought. Front Plant Sci 7:1550

    Article  Google Scholar 

  • Clemente A, Olias R (2017) Beneficial effects of legumes in gut health. Curr Opin Food Sci 14:32–36

    Article  Google Scholar 

  • Coba de la Pena T, Pueyo JJ (2012) Legumes in the reclamation of marginal soils, from cultivar and inoculant selection to transgenic approaches. Agron Sustain Dev 32(1):65–91

    Article  Google Scholar 

  • Cochetel N, Ghan R, Toups HS, Degu A, Tillett RL, Schlauch KA, Cramer GR (2020) Drought tolerance of the grapevine, Vitis champinii cv. Ramsey, is associated with higher photosynthesis and greater transcriptomic responsiveness of abscisic acid biosynthesis and signaling. BMC Plant Biol 20(1):1–25

    Article  Google Scholar 

  • Covarrubias AA, Reyes JL (2010) Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environ 33(4):481–489

    Article  CAS  Google Scholar 

  • Croser JS, Clarke HJ, Siddique KHM, Khan TN (2003) Low-temperature stress: implications for chickpea (Cicer arietinum L.) improvement. Crit Rev Plant Sci 22(2):185–219

    Article  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5(6):663–667

    Article  CAS  Google Scholar 

  • Damanik RI, Maziah M, Ismail MR, Ahmad S, Zain AM (2010) Responses of the antioxidative enzymes in Malaysian rice (Oryza sativa L.) cultivars under submergence condition. Acta Physiol Plant 32(4):739–747

    Article  CAS  Google Scholar 

  • Das KK, Panda D, Nagaraju M, Sharma SG, Sarkar RK (2004) Antioxidant enzymes and aldehyde releasing capacity of rice cultivars (Oryza sativa L.) as determinants of anaerobic seedling establishment capacity. Bulgar J Plant Physiol 30(1–2):34–44

    CAS  Google Scholar 

  • de Freitas PAF, de Carvalho HH, Costa JH, Miranda RS, Saraiva KDC, de Oliveira FDB, Coelho DG, Prisco JT, Gomes-Filho E (2019) Salt acclimation in sorghum plants by exogenous proline: physiological and biochemical changes and regulation of proline metabolism. Plant Cell Rep 38(3):403–416

    Article  Google Scholar 

  • del Pozo JC, Ramirez-Parra E (2014) Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids. Plant Cell Environ 37(12):2722–2737

    Article  Google Scholar 

  • Ding Y, Shi Y, Yang S (2019) Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222(4):1690–1704

    Article  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Al-Khatib K (2011) Ethylene perception inhibitor 1-MCP decreases oxidative damage of leaves through enhanced antioxidant defense mechanisms in soybean plants grown under high temperature stress. Environ Exp Bot 71(2):215–223

    Article  CAS  Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21(3):972–984

    Article  CAS  Google Scholar 

  • Dong Z, Shi L, Wang Y, Chen L, Cai Z, Wang Y, Jin J, Li X (2013) Identification and dynamic regulation of microRNAs involved in salt stress responses in functional soybean nodules by high-throughput sequencing. Int J Mol Sci 14(2):2717–2738

    Article  CAS  Google Scholar 

  • Edreira JIR, Otegui ME (2012) Heat stress in temperate and tropical maize hybrids: differences in crop growth, biomass partitioning and reserves use. Field Crop Res 130:87–98

    Article  Google Scholar 

  • El Sayed H, El Sayed A (2011) Influence of NaCl and Na2SO4 treatments on growth development of broad bean (Vicia Faba, L.) plant. J Life Sci 5(7):513–523

    Google Scholar 

  • Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147(4):1984–1993

    Article  CAS  Google Scholar 

  • Fan TT, Ni JJ, Dong WC, An LZ, Xiang Y, Cao SQ (2015) Effect of low temperature on profilins and ADFs transcription and actin cytoskeleton reorganization in Arabidopsis. Biol Plant 59(4):793–796

    Article  CAS  Google Scholar 

  • Farooq M, Hussain M, Siddique KHM (2014) Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci 33(4):331–349

    Article  CAS  Google Scholar 

  • Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N, Migdadi HM, Alghamdi SS, Siddique KHM (2017) Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol Biochem 118:199–217

    Article  CAS  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6(03):269–279

    Article  CAS  Google Scholar 

  • Frugier F, Poirier S, Satiat-Jeunemaître B, Kondorosi A, Crespi M (2000) A Krüppel-like zinc finger protein is involved in nitrogen-fixing root nodule organogenesis. Genes Dev 14(4):475–482

    Article  CAS  Google Scholar 

  • Gall JE, Rajakaruna N (2013) The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. In: Lang M (ed) Brassicaceae: characterization, functional genomics and health benefits. Nova Science, New York, pp 121–148

    Google Scholar 

  • Garzón T, Gunsé B, Moreno AR, Tomos AD, Barceló J, Poschenrieder C (2011) Aluminium-induced alteration of ion homeostasis in root tip vacuoles of two maize varieties differing in Al tolerance. Plant Sci 180(5):709–715

    Article  Google Scholar 

  • Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261

    Article  CAS  Google Scholar 

  • Grover A, Mittal D, Negi M, Lavania D (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 205:38–47

    Article  Google Scholar 

  • Guan Q, Lu X, Zeng H, Zhang Y, Zhu J (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74(5):840–851

    Article  CAS  Google Scholar 

  • Guler NS, Pehlivan N (2016) Exogenous low-dose hydrogen peroxide enhances drought tolerance of soybean (Glycine max L.) through inducing antioxidant system. Acta Biol Hung 67(2):169–183

    Article  CAS  Google Scholar 

  • Gunawardhana MDM, De Silva CS (2011) Impact of temperature and water stress on growth yield and related biochemical parameters of okra. Trop Agric Res 23(1):77–83

    Article  Google Scholar 

  • Guo X, Liu D, Chong K (2018) Cold signaling in plants: insights into mechanisms and regulation. J Integr Plant Biol 60(9):745–756

    Article  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596

    Article  Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17(3):172–179

    Article  CAS  Google Scholar 

  • Haider MS, Kurjogi MM, Khalil-Ur-Rehman M, Fiaz M, Pervaiz T, Jiu S, Haifeng J, Chen W, Fang J (2017) Grapevine immune signaling network in response to drought stress as revealed by transcriptomic analysis. Plant Physiol Biochem 121:187–195

    Article  CAS  Google Scholar 

  • Hajyzadeh M, Turktas M, Khawar KM, Unver T (2015) MiR408 overexpression causes increased drought tolerance in chickpea. Gene 555(2):186–193

    Article  CAS  Google Scholar 

  • Hanafy MS, El-Banna A, Schumacher HM, Jacobsen H-J, Hassan FS (2013) Enhanced tolerance to drought and salt stresses in transgenic faba bean (Vicia faba L.) plants by heterologous expression of the PR10a gene from potato. Plant Cell Rep 32(5):663–674

    Article  CAS  Google Scholar 

  • HanumanthaRao B, Nair RM, Nayyar H (2016) Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Front Plant Sci 7:957

    Article  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Silva JA, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 261–315

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    Article  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51(1):463–499

    Article  CAS  Google Scholar 

  • Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249(3):599–611

    Article  CAS  Google Scholar 

  • Hayat F, Sun Z, Ni Z, Iqbal S, Xu W, Gao Z, Qiao Y, Tufail MA, Jahan MS, Khan U (2022) Exogenous melatonin improves cold tolerance of strawberry (Fragaria × ananassa Duch.) through modulation of DREB/CBF-COR pathway and antioxidant defense system. Horticulturae 8(3):194

    Article  Google Scholar 

  • Hernández JA (2019) Salinity tolerance in plants: trends and perspectives. Int J Mol Sci 20(10):2408

    Article  Google Scholar 

  • Hernandez JA, Campillo A, Jimenez A, Alarcon JJ, Sevilla F (1999) Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol 141(2):241–251

    Article  CAS  Google Scholar 

  • Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants 16(3):259–272

    Article  CAS  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875

    Google Scholar 

  • Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    Article  CAS  Google Scholar 

  • Hu X, Xu X, Li C (2018) Ectopic expression of the LoERF017 transcription factor from Larix olgensis Henry enhances salt and osmotic-stress tolerance in Arabidopsis thaliana. Plant Biotechnol Rep 12(2):93–104

    Article  Google Scholar 

  • Hua J (2016) Defining roles of tandemly arrayed CBF genes in freezing tolerance with new genome editing tools. New Phytol 212(2):301–302

    Article  Google Scholar 

  • Huang K, Peng L, Liu Y, Yao R, Liu Z, Li X, Yang Y, Wang J (2018) Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/drought-stress response. Biochem Biophys Res Commun 498(1):92–98

    Article  CAS  Google Scholar 

  • Hwarari D, Guan Y, Ahmad B, Movahedi A, Min T, Hao Z, Lu Y, Chen J, Yang L (2022) ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress. Int J Mol Sci 23(3):1549

    Article  CAS  Google Scholar 

  • Jacob P, Hirt H, Bendahmane A (2017) The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J 15(4):405–414

    Article  CAS  Google Scholar 

  • Jahan MS, Guo S, Sun J, Shu S, Wang Y, Abou El-Yazied A, Alabdallah NM, Hikal M, Mohamed MHM, Ibrahim MFM (2021) Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiol Biochem 167:309–320

    Article  CAS  Google Scholar 

  • Jan AU, Hadi F, Midrarullah AA, Rahman K (2017) Role of CBF/DREB gene expression in abiotic stress tolerance. A review. Int J Hortic Agric 2:1–12

    Google Scholar 

  • Jatan R, Tiwari S, Asif MH, Lata C (2019) Genome-wide profiling reveals extensive alterations in Pseudomonas putida-mediated miRNAs expression during drought stress in chickpea (Cicer arietinum L.). Environ Exp Bot 157:217–227

    Article  CAS  Google Scholar 

  • Ji C, Mao X, Hao J, Wang X, Xue J, Cui H, Li R (2018) Analysis of bZIP transcription factor family and their expressions under salt stress in Chlamydomonas reinhardtii. Int J Mol Sci 19(9):2800

    Article  Google Scholar 

  • Jiang C, Li X, Zou J, Ren J, Jin C, Zhang H, Yu H, Jin H (2021) Comparative transcriptome analysis of genes involved in the drought stress response of two peanut (Arachis hypogaea L.) varieties. BMC Plant Biol 21(1):1–14

    Article  Google Scholar 

  • Jin H, Liu S, Zenda T, Wang X, Liu G, Duan H (2019) Maize leaves drought-responsive genes revealed by comparative transcriptome of two cultivars during the filling stage. PLoS One 14(10):e0223786

    Article  CAS  Google Scholar 

  • Jyoti B, Yadav SK (2012) Comparative study on biochemical parameters and antioxidant enzymes in a drought tolerant and a sensitive variety of horsegram (Macrotyloma uniflorum) under drought stress. Am J Plant Physiol 7(1):17–29

    Google Scholar 

  • Kamiyama Y, Katagiri S, Umezawa T (2021) Growth promotion or osmotic stress response: how SNF1-related protein kinase 2 (SnRK2) kinases are activated and manage intracellular signaling in plants. Plants 10(7):1443

    Article  CAS  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50(6):967–981

    Article  CAS  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Crouch JH, Serraj R (2006) Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crop Res 95(2):171–181

    Article  Google Scholar 

  • Kaur G, Asthir B (2017) Molecular responses to drought stress in plants. Biol Plant 61(2):201–209

    Article  CAS  Google Scholar 

  • Kaushal N, Awasthi R, Gupta K, Gaur P, Siddique KHM, Nayyar H (2013) Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct Plant Biol 40(12):1334–1349

    Article  CAS  Google Scholar 

  • Kawano N, Ella E, Ito O, Yamauchi Y, Tanaka K (2002) Metabolic changes in rice seedlings with different submergence tolerance after desubmergence. Environ Exp Bot 47(3):195–203

    Article  CAS  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20(4):219–229

    Article  CAS  Google Scholar 

  • Ketehouli T, Zhou Y-G, Dai S-Y, Carther KFI, Sun D-Q, Li Y, Nguyen QVH, Xu H, Wang F-W, Liu W-C (2021) A soybean calcineurin B-like protein-interacting protein kinase, GmPKS4, regulates plant responses to salt and alkali stresses. J Plant Physiol 256:153331

    Article  CAS  Google Scholar 

  • Kim YS, Lee M, Lee J-H, Lee H-J, Park C-M (2015) The unified ICE–CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Plant Mol Biol 89(1):187–201

    Article  CAS  Google Scholar 

  • Kukreja S, Nandwal AS, Kumar N, Sharma SK, Unvi V, Sharma PK (2005) Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant 49(2):305–308

    Article  CAS  Google Scholar 

  • Kumar S, Gupta D, Nayyar H (2012a) Comparative response of maize and rice genotypes to heat stress: status of oxidative stress and antioxidants. Acta Physiol Plant 34(1):75–86

    Article  CAS  Google Scholar 

  • Kumar S, Kaushal N, Nayyar H, Gaur P (2012b) Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmoprotectants. Acta Physiol Plant 34(5):1651–1658

    Article  CAS  Google Scholar 

  • Kumar S, Thakur P, Kaushal N, Malik JA, Gaur P, Nayyar H (2013) Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Arch Agron Soil Sci 59(6):823–843

    Article  CAS  Google Scholar 

  • Kundrátová K, Bartas M, Pečinka P, Hejna O, Rychlá A, Čurn V, Červeň J (2021) Transcriptomic and proteomic analysis of drought stress response in opium poppy plants during the first week of germination. Plants 10(9):1878

    Article  Google Scholar 

  • Kurutas EB (2016) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15(1):1–22. https://doi.org/10.1186/s12937-016-0186-5

    Article  CAS  Google Scholar 

  • Laan P, Smolders A, Blom C, Armstrong W (1989) The relative roles of internal aeration, radial oxygen losses, iron exclusion and nutrient balances in flood-tolerance of Rumex species. Acta Bot Neerlandica 38(2):131–145

    Article  Google Scholar 

  • Lee HG, Seo PJ (2015) The MYB 96–HHP module integrates cold and abscisic acid signaling to activate the CBF–COR pathway in Arabidopsis. Plant J 82(6):962–977

    Article  CAS  Google Scholar 

  • Li WF, Wong F, Tsai S, Phang T, Shao G, Lam H (2006) Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant Cell Environ 29(6):1122–1137

    Article  CAS  Google Scholar 

  • Li X, Cheng X, Liu J, Zeng H, Han L, Tang W (2011) Heterologous expression of the Arabidopsis DREB1A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants. Plant Biotechnol Rep 5(1):61–69

    Article  Google Scholar 

  • Li F, Li M, Wang P, Cox KL Jr, Duan L, Dever JK, Shan L, Li Z, He P (2017) Regulation of cotton (Gossypium hirsutum) drought responses by mitogen-activated protein (MAP) kinase cascade-mediated phosphorylation of Gh WRKY 59. New Phytol 215(4):1462–1475

    Article  CAS  Google Scholar 

  • Lim G, Zhang X, Chung M, Lee DJ, Woo Y, Cheong H, Kim CS (2010) A putative novel transcription factor, AtSKIP, is involved in abscisic acid signalling and confers salt and osmotic tolerance in Arabidopsis. New Phytol 185(1):103–113

    Article  CAS  Google Scholar 

  • Lin L, Wu J, Jiang M, Wang Y (2021) Plant mitogen-activated protein kinase cascades in environmental stresses. Int J Mol Sci 22(4):1543

    Article  CAS  Google Scholar 

  • Liu W, Yu K, He T, Li F, Zhang D, Liu J (2013) The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species. Sci World J 2013:658793

    Google Scholar 

  • Liu J, Shi Y, Yang S (2018) Insights into the regulation of C-repeat binding factors in plant cold signaling. J Integr Plant Biol 60(9):780–795

    Article  Google Scholar 

  • Liu S, Zenda T, Li J, Wang Y, Liu X, Duan H (2020) Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages. PLoS One 15(10):e0240468

    Article  CAS  Google Scholar 

  • Lu L, Chen X, Wang P, Lu Y, Zhang J, Yang X, Cheng T, Shi J, Chen J (2021) CIPK11: a calcineurin B-like protein-interacting protein kinase from Nitraria tangutorum, confers tolerance to salt and drought in Arabidopsis. BMC Plant Biol 21(1):1–16

    Article  Google Scholar 

  • Luo X-S, Xue Y, Wang Y-L, Cang L, Xu B, Ding J (2015) Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere 127:152–157

    Article  CAS  Google Scholar 

  • Luo Q, Wei Q, Wang R, Zhang Y, Zhang F, He Y, Zhou S, Feng J, Yang G, He G (2017) BdCIPK31, a calcineurin B-like protein-interacting protein kinase, regulates plant response to drought and salt stress. Front Plant Sci 8:1184

    Article  Google Scholar 

  • Luo D, Hou X, Zhang Y, Meng Y, Zhang H, Liu S, Wang X, Chen R (2019) CaDHN5, a dehydrin gene from pepper, plays an important role in salt and osmotic stress responses. Int J Mol Sci 20(8):1989

    Article  CAS  Google Scholar 

  • Lv K, Li J, Zhao K, Chen S, Nie J, Zhang W, Liu G, Wei H (2020) Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species. Plant Sci 292:110375

    Article  CAS  Google Scholar 

  • Lynch JP (2018) Rightsizing root phenotypes for drought resistance. J Exp Bot 69(13):3279–3292

    Article  CAS  Google Scholar 

  • Maqbool MA, Aslam M, Ali H (2017) Breeding for improved drought tolerance in Chickpea (Cicer arietinum L.). Plant Breed 136(3):300–318

    Article  CAS  Google Scholar 

  • Maszkowska J, Dębski J, Kulik A, Kistowski M, Bucholc M, Lichocka M, Klimecka M, Sztatelman O, Szymańska KP, Dadlez M (2019) Phosphoproteomic analysis reveals that dehydrins ERD10 and ERD14 are phosphorylated by SNF1-related protein kinase 2.10 in response to osmotic stress. Plant Cell Environ 42(3):931–946

    CAS  Google Scholar 

  • Mian MAR, Bailey MA, Ashley DA, Wells R, Carter TE Jr, Parrott WA, Boerma HR (1996) Molecular markers associated with water use efficiency and leaf ash in soybean. Crop Sci 36(5):1252–1257

    Article  CAS  Google Scholar 

  • Mian MAR, Ashley DA, Boerma HR (1998) An additional QTL for water use efficiency in soybean. Crop Sci 38(2):390–393

    Article  Google Scholar 

  • Miao H, Sun P, Liu J, Wang J, Xu B, Jin Z (2018) Overexpression of a novel ROP gene from the banana (MaROP5g) confers increased salt stress tolerance. Int J Mol Sci 19(10):3108

    Article  Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125(4):625–645. https://doi.org/10.1007/s00122-012-1904-9

    Article  CAS  Google Scholar 

  • Mishra S, Sahu G, Shaw BP (2022) Integrative small RNA and transcriptome analysis provides insight into key role of miR408 towards drought tolerance response in cowpea. Plant Cell Rep 41(1):75–94

    Article  CAS  Google Scholar 

  • Miyashita K, Tanakamaru S, Maitani T, Kimura K (2005) Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ Exp Bot 53(2):205–214

    Article  CAS  Google Scholar 

  • Mohamed HI, Latif HH (2017) Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol Mol Biol Plants 23(3):545–556

    Article  CAS  Google Scholar 

  • Mohammed AS, Kapri A, Goel R (2011) Heavy metal pollution: source, impact, and remedies. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal-contaminated soils. Springer, Netherlands, pp 1–28

    Google Scholar 

  • Monneveux P, Ramírez DA, Pino M-T (2013) Drought tolerance in potato (S. tuberosum L.): can we learn from drought tolerance research in cereals? Plant Sci 205:76–86

    Article  Google Scholar 

  • Monteros M, Lee G, Missaoui A, Carter T, Boerma H (2006) Identification and confirmation of QTL conditioning drought tolerance in Nepalese soybean PI471938. The 11th Biennial conference on the molecular and cellular biology of the soybean

    Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9(2):230–249

    Article  CAS  Google Scholar 

  • Movahedi A, Zhang J, Gao P, Yang Y, Wang L, Yin T, Kadkhodaei S, Ebrahimi M, Zhuge Q (2015) Expression of the chickpea CarNAC3 gene enhances salinity and drought tolerance in transgenic poplars. Plant Cell Tissue Organ Cult 120(1):141–154

    Article  CAS  Google Scholar 

  • Muhammad T, Zhang J, Ma Y, Li Y, Zhang F, Zhang Y, Liang Y (2019) Overexpression of a mitogen-activated protein kinase SlMAPK3 positively regulates tomato tolerance to cadmium and drought stress. Molecules 24(3):556

    Article  Google Scholar 

  • Munemasa S, Mori IC, Murata Y (2011) Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. Plant Signal Behav 6(7):939–941

    Article  CAS  Google Scholar 

  • Muthusamy M, Uma S, Backiyarani S, Saraswathi MS, Chandrasekar A (2016) Transcriptomic changes of drought-tolerant and sensitive banana cultivars exposed to drought stress. Front Plant Sci 7:1609

    Article  Google Scholar 

  • Nadeem M, Li J, Yahya M, Sher A, Ma C, Wang X, Qiu L (2019) Research progress and perspective on drought stress in legumes: a review. Int J Mol Sci 20(10):2541

    Article  CAS  Google Scholar 

  • Neilson S, Rajakaruna N (2015) Phytoremediation of agricultural soils: using plants to clean metal-contaminated arable land. In: Phytoremediation. Springer, New York, pp 159–168

    Chapter  Google Scholar 

  • Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, Van Ha C, Fujita Y, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L (2013) Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc Natl Acad Sci 110(12):4840–4845

    Article  CAS  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Foyer CH (2000) Peroxide processing in photosynthesis: antioxidant coupling and redox signalling. Philos Trans R Soc Lond B Biol Sci 355(1402):1465–1475

    Article  CAS  Google Scholar 

  • Norén L, Kindgren P, Stachula P, Rühl M, Eriksson ME, Hurry V, Strand Å (2016) Circadian and plastid signaling pathways are integrated to ensure correct expression of the CBF and COR genes during photoperiodic growth. Plant Physiol 171(2):1392–1406

    Google Scholar 

  • Oram NJ, Sun Y, Abalos D, van Groenigen JW, Hartley S, De Deyn GB (2021) Plant traits of grass and legume species for flood resilience and N2O mitigation. Funct Ecol 35(10):2205–2218

    Article  CAS  Google Scholar 

  • Orvar BL, Sangwan V, Omann F, Dhindsa RS (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23(6):785–794

    Article  CAS  Google Scholar 

  • Osakabe Y, Osakabe K (2012) Abiotic stress responses in plants: present and future. In: Ahmad P, Prasad MNV (eds) Abiotic Stress: new research. Springer, New York, pp 171–180

    Google Scholar 

  • Osakabe Y, Kajita S, Osakabe K (2011) Genetic engineering of woody plants: current and future targets in a stressful environment. Physiol Plant 142(2):105–117

    Article  CAS  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran L-S (2014) Response of plants to water stress. Front Plant Sci 5:1–8

    Article  Google Scholar 

  • Osman HS (2015) Enhancing antioxidant–yield relationship of pea plant under drought at different growth stages by exogenously applied glycine betaine and proline. Ann Agric Sci 60(2):389–402

    Article  Google Scholar 

  • Passioura JB (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39(11):851–859

    Article  CAS  Google Scholar 

  • Patel PK, Hemantaranjan A, Sarma BK, Radha S (2011) Growth and antioxidant system under drought stress in chickpea (Cicer arietinum L.) as sustained by salicylic acid. J Stress Physiol Biochem 7(4):130–144

    Google Scholar 

  • Pearce RS (2001) Plant freezing and damage. Ann Bot 87(4):417–424

    Article  CAS  Google Scholar 

  • Pearce S, Zhu J, Boldizsár Á, Vágújfalvi A, Burke A, Garland-Campbell K, Galiba G, Dubcovsky J (2013) Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat. Theor Appl Genet 126(11):2683–2697

    Article  Google Scholar 

  • Peng H, Cheng H-Y, Chen C, Yu X-W, Yang J-N, Gao W-R, Shi Q-H, Zhang H, Li J-G, Ma H (2009) A NAC transcription factor gene of Chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes. J Plant Physiol 166(17):1934–1945

    Article  CAS  Google Scholar 

  • Peng Y-L, Wang Y-S, Fei J, Sun C-C (2020) Isolation and expression analysis of two novel C-repeat binding factor (CBF) genes involved in plant growth and abiotic stress response in mangrove Kandelia obovata. Ecotoxicology 29(6):718–725

    Article  CAS  Google Scholar 

  • Phang T, Shao G, Lam H (2008) Salt tolerance in soybean. J Integr Plant Biol 50(10):1196–1212

    Article  CAS  Google Scholar 

  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62(3):869–882

    Article  CAS  Google Scholar 

  • Pottier M, Oomen R, Picco C, Giraudat J, Scholz-Starke J, Richaud P, Carpaneto A, Thomine S (2015) Identification of mutations allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to discriminate against cadmium. Plant J 83(4):625–637

    Article  CAS  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH Jr, Thomas JMG (2002) Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Glob Chang Biol 8(8):710–721

    Article  Google Scholar 

  • Rai KK, Pandey N, Meena RP, Rai SP (2021) Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: a comprehensive review. Ecotoxicol Environ Saf 208:111750

    Article  CAS  Google Scholar 

  • Rajkowitsch L, Chen D, Stampfl S, Semrad K, Waldsich C, Mayer O, Jantsch MF, Konrat R, Bläsi U, Schroeder R (2007) RNA chaperones, RNA annealers and RNA helicases. RNA Biol 4(3):118–130

    Article  CAS  Google Scholar 

  • Rana D, Dass A, Rajanna G, Kaur R (2016) Biotic and abiotic stress management in pulses. J Agron 61:238–248

    Google Scholar 

  • Rani B, Dhawan K, Jain V, Chhabra ML, Singh D (2013) High temperature induced changes in antioxidative enzymes in Brassica juncea (L) Czern & Coss. Recuperado El:12

    Google Scholar 

  • Ricachenevsky FK, Menguer PK, Sperotto RA, Williams LE, Fett JP (2013) Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front Plant Sci 4:144

    Article  Google Scholar 

  • Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P (2015) Exploring jasmonates in the hormonal network of drought and salinity responses. Front Plant Sci 6:1077

    Article  Google Scholar 

  • Roshandel P, Flowers T (2009) The ionic effects of NaCl on physiology and gene expression in rice genotypes differing in salt tolerance. Plant Soil 315(1):135–147

    Article  CAS  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69(3):225–232

    Article  Google Scholar 

  • Ruelland E, Vaultier M-N, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150

    Article  CAS  Google Scholar 

  • Ruthrof KX, Fontaine JB, Hopkins AJM, McHenry MP, O’Hara G, McComb J, Hardy GESJ, Howieson J (2018) Potassium amendment increases biomass and reduces heavy metal concentrations in Lablab purpureus after phosphate mining. Land Degrad Dev 29(3):398–407

    Article  Google Scholar 

  • Saglam A, Saruhan N, Terzi R, Kadioglu A (2011) The relations between antioxidant enzymes and chlorophyll fluorescence parameters in common bean cultivars differing in sensitivity to drought stress. Russ J Plant Physiol 58(1):60–68

    Article  CAS  Google Scholar 

  • Sahitya UL, Krishna MSR, Deepthi R, Prasad GS, Kasim D (2018) Seed antioxidants interplay with drought stress tolerance indices in chilli (Capsicum annuum L) seedlings. Biomed Res Int 2018:1605096

    Article  Google Scholar 

  • Salmanoglu E, Kurutas EB (2020) The levels of oxidative and nitrosative stress in patients who had 99mTc-MIBI myocardial perfusion scintigraphy and 99mTc-DMSA, 99mTc-MAG-3 renal scintigraphy. Nucl Med Rev 23(2):89–96

    Article  Google Scholar 

  • Savchenko T, Kolla VA, Wang C-Q, Nasafi Z, Hicks DR, Phadungchob B, Chehab WE, Brandizzi F, Froehlich J, Dehesh K (2014) Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol 164(3):1151–1160

    Article  CAS  Google Scholar 

  • Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219:1–12

    Article  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97(12):6896–6901

    Article  CAS  Google Scholar 

  • Shi Y, Ding Y, Yang S (2015) Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiol 56(1):7–15

    Article  CAS  Google Scholar 

  • Siddique KHM, Walton GH, Seymour M (1993) A comparison of seed yields of winter grain legumes in Western Australia. Aust J Exp Agric 33(7):915–922

    Article  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75(1):403–433

    Article  CAS  Google Scholar 

  • Singh UK, Kumar B (2017) Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere 174:183–199

    Article  CAS  Google Scholar 

  • Song N-H, Ahn Y-J (2011) DcHsp17. 7, a small heat shock protein in carrot, is tissue-specifically expressed under salt stress and confers tolerance to salinity. New Biotechnol 28(6):698–704

    Article  CAS  Google Scholar 

  • Song Q, Wang X, Li J, Chen THH, Liu Y, Yang X (2021) CBF1 and CBF4 in Solanum tuberosum L. differ in their effect on low-temperature tolerance and development. Environ Exp Bot 185:104416

    Article  CAS  Google Scholar 

  • Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water: a QTL analysis of drought tolerance. Crop Sci 41(2):493–509

    Article  CAS  Google Scholar 

  • Tan W, Wei Meng Q, Brestic M, Olsovska K, Yang X (2011) Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J Plant Physiol 168(17):2063–2071

    Article  CAS  Google Scholar 

  • Tang M, Liu X, Deng H, Shen S (2011) Over-expression of JcDREB, a putative AP2/EREBP domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas, enhances salt and freezing tolerance in transgenic Arabidopsis thaliana. Plant Sci 181(6):623–631

    Article  CAS  Google Scholar 

  • Tardieu F (2012) Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J Exp Bot 63(1):25–31

    Article  CAS  Google Scholar 

  • Tauqeer HM, Ali S, Rizwan M, Ali Q, Saeed R, Iftikhar U, Ahmad R, Farid M, Abbasi GH (2016) Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response. Ecotoxicol Environ Saf 126:138–146

    Article  CAS  Google Scholar 

  • Teixeira E, Fischer G, Velthuizen H, Walter C, Ewert F (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agric For Meteorol 170:206–215

    Article  Google Scholar 

  • Thapa G, Sadhukhan A, Panda SK, Sahoo L (2012) Molecular mechanistic model of plant heavy metal tolerance. Biometals 25(3):489–505

    Article  CAS  Google Scholar 

  • Theocharis A, Clément C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235(6):1091–1105

    Article  CAS  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154(2):571–577

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11(8):405–412

    Article  CAS  Google Scholar 

  • Tung SA, Smeeton R, White CA, Black CR, Taylor IB, Hilton HW, Thompson AJ (2008) Over-expression of LeNCED1 in tomato (Solanum lycopersicum L.) with the rbcS3C promoter allows recovery of lines that accumulate very high levels of abscisic acid and exhibit severe phenotypes. Plant Cell Environ 31(7):968–981

    Article  CAS  Google Scholar 

  • Turner NC, Colmer TD, Quealy J, Pushpavalli R, Krishnamurthy L, Kaur J, Singh G, Siddique KHM, Vadez V (2013) Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant Soil 365(1):347–361

    Article  CAS  Google Scholar 

  • Tyagi A, Sharma S, Ali S, Gaikwad K (2022) Crosstalk between H2S and NO: an emerging signalling pathway during waterlogging stress in legume crops. Plant Biol 24(4):576–586

    Article  CAS  Google Scholar 

  • Tzudir L, Bera PS, Chakraborty PK (2014) Impact of temperature on the reproductive development in mungbean (Vigna radiata) varieties under different dates of sowing. Int J Bioresour Stress Manag 5(2):194–199

    Article  Google Scholar 

  • Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res 25(33):33103–33118

    Article  CAS  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51(11):1821–1839

    Article  CAS  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13(2):132–138

    Article  CAS  Google Scholar 

  • Vadez V, Ratnakumar P (2016) High transpiration efficiency increases pod yield under intermittent drought in dry and hot atmospheric conditions but less so under wetter and cooler conditions in groundnut (Arachis hypogaea L.). Field Crop Res 193:16–23

    Article  Google Scholar 

  • Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A, Jukanti AK, Jayalakshmi V, Vemula A, Singh SJ, Yasin M, Sheshshayee MS, Viswanatha KP (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127(2):445–462

    Article  CAS  Google Scholar 

  • Varshney RK, Thudi M, Muehlbauer FJ (2017) Future prospects for chickpea research. In: The chickpea genome. Springer, New York, pp 135–142

    Chapter  Google Scholar 

  • Ventorino V, Caputo R, De Pascale S, Fagnano M, Pepe O, Moschetti G (2012) Response to salinity stress of Rhizobium leguminosarum bv. viciae strains in the presence of different legume host plants. Ann Microbiol 62(2):811–823

    Article  CAS  Google Scholar 

  • Verma D, Singla-Pareek SL, Rajagopal D, Reddy MK, Sopory SK (2007) Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J Biosci 32(3):621–628

    Article  CAS  Google Scholar 

  • Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J, Junot C, Bourguignon J (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11(9):1650–1663

    Article  CAS  Google Scholar 

  • Waheed A, Hafiz IA, Qadir G, Murtaza G, Mahmood T, Ashraf M (2006) Effect of salinity on germination, growth, yield, ionic balance and solute composition of Pigeon pea (Cajanus cajan (L.) Millsp). Pak J Bot 38(4):1103

    Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Wang C-q, Tao W, Ping MU, Li Z, Ling Y (2013) Quantitative trait loci for mercury tolerance in rice seedlings. Rice Sci 20(3):238–242

    Article  Google Scholar 

  • Wang N, Qian Z, Luo M, Fan S, Zhang X, Zhang L (2018a) Identification of salt stress responding genes using transcriptome analysis in green alga Chlamydomonas reinhardtii. Int J Mol Sci 19(11):3359

    Article  Google Scholar 

  • Wang X, Wang L, Wang Y, Liu H, Hu D, Zhang N, Zhang S, Cao H, Cao Q, Zhang Z (2018b) Arabidopsis PCaP2 plays an important role in chilling tolerance and ABA response by activating CBF- and SnRK2-mediated transcriptional regulatory network. Front Plant Sci 9:215

    Article  Google Scholar 

  • Wang Y, Li T, John SJ, Chen M, Chang J, Yang G, He G (2018c) A CBL-interacting protein kinase TaCIPK27 confers drought tolerance and exogenous ABA sensitivity in transgenic Arabidopsis. Plant Physiol Biochem 123:103–113

    Article  CAS  Google Scholar 

  • Wang Q, Ni J, Shah F, Liu W, Wang D, Yao Y, Hu H, Huang S, Hou J, Fu S (2019) Overexpression of the stress-inducible SsMAX2 promotes drought and salt resistance via the regulation of redox homeostasis in Arabidopsis. Int J Mol Sci 20(4):837

    Article  CAS  Google Scholar 

  • Waraich EA, Ahmad R, Ashraf MY (2022) Role of mineral nutrition in alleviation of drought stress in plants. Aust J Crop Sci 5(6):764–777

    Google Scholar 

  • Wasaya A, Zhang X, Fang Q, Yan Z (2018) Root phenotyping for drought tolerance: a review. Agronomy 8(11):241

    Article  Google Scholar 

  • Weyers JDB, Paterson NW (2001) Plant hormones and the control of physiological processes. New Phytol 152(3):375–407

    Article  CAS  Google Scholar 

  • Wu G, Zhou Z, Chen P, Tang X, Shao H, Wang H (2014) Comparative ecophysiological study of salt stress for wild and cultivated soybean species from the Yellow River Delta, China. ScientificWorldJournal 2014:651745

    Google Scholar 

  • Wu H, Lv H, Li L, Liu J, Mu S, Li X, Gao J (2015) Genome-wide analysis of the AP2/ERF transcription factors family and the expression patterns of DREB genes in Moso Bamboo (Phyllostachys edulis). PLoS One 10(5):e0126657

    Article  Google Scholar 

  • Wu J, Zhao Q, Wu G, Yuan H, Ma Y, Lin H, Pan L, Li S, Sun D (2019) Comprehensive analysis of differentially expressed unigenes under nacl stress in flax (Linum usitatissimum L.) using RNA-Seq. Int J Mol Sci 20(2):369

    Article  Google Scholar 

  • Xie Z, Lin W, Yu G, Cheng Q, Xu B, Huang B (2019) Improved cold tolerance in switchgrass by a novel CCCH-type zinc finger transcription factor gene, PvC3H72, associated with ICE1–CBF–COR regulon and ABA-responsive genes. Biotechnol Biofuels 12(1):224

    Article  Google Scholar 

  • Xie N, Li B, Yu J, Shi R, Zeng Q, Jiang Y, Zhao D (2022) Transcriptomic and proteomic analyses uncover the drought adaption landscape of Phoebe zhennan. BMC Plant Biol 22(1):1–16

    Article  CAS  Google Scholar 

  • Yan J, Wang B, Jiang Y, Cheng L, Wu T (2014) GmFNSII-controlled soybean flavone metabolism responds to abiotic stresses and regulates plant salt tolerance. Plant Cell Physiol 55(1):74–86

    Article  CAS  Google Scholar 

  • Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217(2):523–539

    Article  CAS  Google Scholar 

  • Yang Y, Al-Baidhani HHJ, Harris J, Riboni M, Li Y, Mazonka I, Bazanova N, Chirkova L, Sarfraz Hussain S, Hrmova M (2020) DREB/CBF expression in wheat and barley using the stress-inducible promoters of HD-Zip I genes: impact on plant development, stress tolerance and yield. Plant Biotechnol J 18(3):829–844

    Article  CAS  Google Scholar 

  • Yasar F, Uzal O, Yasar TO (2013) Investigation of the relationship between the tolerance to drought stress levels and antioxidant enzyme activities in green bean (Phaseolus Vulgaris L.) genotypes. Afr J Agric Res 8:5759–5763

    Google Scholar 

  • Yeh C-H, Kaplinsky NJ, Hu C, Charng Y (2012) Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci 195:10–23

    Article  CAS  Google Scholar 

  • You J, Zhang Y, Liu A, Li D, Wang X, Dossa K, Zhou R, Yu J, Zhang Y, Wang L (2019) Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biol 19(1):1–16

    Article  Google Scholar 

  • Zaman MSU, Malik AI, Erskine W, Kaur P (2019) Changes in gene expression during germination reveal pea genotypes with either “quiescence” or “escape” mechanisms of waterlogging tolerance. Plant Cell Environ 42(1):245–258

    Article  CAS  Google Scholar 

  • Zenda T, Liu S, Wang X, Liu G, Jin H, Dong A, Yang Y, Duan H (2019) Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines. Int J Mol Sci 20(6):1268

    Article  CAS  Google Scholar 

  • Zhang J-L, Shi H (2013) Physiological and molecular mechanisms of plant salt tolerance. Photosynth Res 115(1):1–22

    Article  CAS  Google Scholar 

  • Zhang G-H, Su Q, An L-J, Wu S (2008) Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol Biochem 46(2):117–126

    Article  CAS  Google Scholar 

  • Zhang X, Cai J, Wollenweber B, Liu F, Dai T, Cao W, Jiang D (2013) Multiple heat and drought events affect grain yield and accumulations of high molecular weight glutenin subunits and glutenin macropolymers in wheat. J Cereal Sci 57(1):134–140

    Article  CAS  Google Scholar 

  • Zhang D, Kumar M, Xu L, Wan Q, Huang Y, Xu Z-L, He X-L, Ma J-B, Pandey GK, Shao H-B (2017) Genome-wide identification of major intrinsic proteins in Glycine soja and characterization of GmTIP2; 1 function under salt and water stress. Sci Rep 7(1):1–12

    Google Scholar 

  • Zhang H, Zhang Y, Deng C, Deng S, Li N, Zhao C, Zhao R, Liang S, Chen S (2018a) The Arabidopsis Ca2+-dependent protein kinase CPK12 is involved in plant response to salt stress. Int J Mol Sci 19(12):4062

    Article  Google Scholar 

  • Zhang X, Li M, Yang H, Li X, Cui Z (2018b) Physiological responses of Suaeda glauca and Arabidopsis thaliana in phytoremediation of heavy metals. J Environ Manag 223:132–139

    Article  CAS  Google Scholar 

  • Zhang X, Liu L, Chen B, Qin Z, Xiao Y, Zhang Y, Yao R, Liu H, Yang H (2019) Progress in understanding the physiological and molecular responses of Populus to salt stress. Int J Mol Sci 20(6):1312

    Article  CAS  Google Scholar 

  • Zhang L, Jiang X, Liu Q, Ahammed GJ, Lin R, Wang L, Shao S, Yu J, Zhou Y (2020) The HY5 and MYB15 transcription factors positively regulate cold tolerance in tomato via the CBF pathway. Plant Cell Environ 43(11):2712–2726

    Article  CAS  Google Scholar 

  • Zhao Y, Gao C, Shi F, Yun L, Jia Y, Wen J (2018) Transcriptomic and proteomic analyses of drought responsive genes and proteins in Agropyron mongolicum Keng. Curr Plant Biol 14:19–29

    Article  Google Scholar 

  • Zheng J-L, Zhao L-Y, Wu C-W, Shen B, Zhu A-Y (2015) Exogenous proline reduces NaCl-induced damage by mediating ionic and osmotic adjustment and enhancing antioxidant defense in Eurya emarginata. Acta Physiol Plant 37(9):1–10

    Article  Google Scholar 

  • Zhou Y, Gao F, Liu R, Feng J, Li H (2012) De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus. BMC Genomics 13(1):1–13

    Article  Google Scholar 

  • Zhu X, Zhang N, Liu X, Li S, Yang J, Hong X, Wang F, Si H (2021) Mitogen-activated protein kinase 11 (MAPK11) maintains growth and photosynthesis of potato plant under drought condition. Plant Cell Rep 40(3):491–506

    Article  CAS  Google Scholar 

  • Zhu-Salzman K, Salzman RA, Ahn J-E, Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol 134(1):420–431

    Article  CAS  Google Scholar 

  • Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X (2009) Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J Plant Physiol 166(8):851–861

    Article  CAS  Google Scholar 

  • Zou J, Liu C, Liu A, Zou D, Chen X (2012) Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol 169(6):628–635

    Article  CAS  Google Scholar 

  • Zoz T, Steiner F, Guimaraes VF, Castagnara DD, Meinerz CC, Fey R (2013) Peroxidase activity as an indicator of water deficit tolerance in soybean cultivars. Biosci J 29:1664–1677

    Google Scholar 

  • Źróbek-Sokolnik A (2012) Temperature stress and responses of plants. In: Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 113–134

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anandan, R., Sunil Kumar, B., Prakash, M., Viswanathan, C. (2023). Physiology and Molecular Biology of Abiotic Stress Tolerance in Legumes. In: Muthu Arjuna Samy, P., Ramasamy, A., Chinnusamy, V., Sunil Kumar, B. (eds) Legumes: Physiology and Molecular Biology of Abiotic Stress Tolerance. Springer, Singapore. https://doi.org/10.1007/978-981-19-5817-5_1

Download citation

Publish with us

Policies and ethics