Skip to main content
Log in

Molecular mechanistic model of plant heavy metal tolerance

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Plants being sessile are susceptible to heavy metals (HMs) toxicity and respond differentially to hostile environments. The toxicity of HM is governed by the type of ion and its concentration, plant physiology and stage of plant growth. Plants counteract the HMs stress by overexpressing numerous stress related proteins, glutathione mediated tolerance pathways and signaling proteins involving networks of various stress regulations. Though the response may vary and be specific in its stress networks regulation for each HM. The intricacy of HM tolerance response involves the set of molecular regulation, which demands to be understood to yield HM tolerant plant. Topical advancements in molecular biology and genomics have facilitated studies in transcriptomics and proteomics to identify regulatory genes implied in HM tolerance in plants. The integration of resources obtained through these studies will be of extreme significance, combining the diverse fields of plant biology to dissect the actual HM stress response network. In this review, we put an endeavor to describe the specific aspects of the molecular mechanisms of a plant response to HMs which may contribute to better understanding of the mode of HMs action and overlaps in metal sensing and signaling/crosstalk to other stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S (2007) Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59:381–392

    Article  CAS  Google Scholar 

  • Alexandersson E, Fraysse L, Sjo vall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    Article  PubMed  CAS  Google Scholar 

  • Andruini I, Godbold DL, Onnis A (1996) Cadmium and copper uptake in Mediterranean tree seedlings. Plant Physiol 97:111–117

    Article  Google Scholar 

  • Arazi T, Kaplan B, Sunkar R, Fromm H (2000) Cyclic nucleotide and Ca2+/calmodulin regulated channels in plants: targets for manipulating heavy metal tolerance, and possible physiological roles. Biochem Soc Trans 28:471–475

    Article  PubMed  CAS  Google Scholar 

  • Arnaud N, Murgia I, Boucherez J, Briat J, Celler F, Gaymard F (2006) J Biol Chem 281:23579–23588

    Article  PubMed  CAS  Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132:618–628

    Article  PubMed  CAS  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Pinger LM (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440

    Article  PubMed  CAS  Google Scholar 

  • Blinda A, Koch B, Ramanjalu S, Dietz KJ (1997) De novo synthesis and accumulation of apoplastic proteins in leaves of heavy metal-exposed barley seedlings. Plant Cell Environ 20:961–981

    Article  Google Scholar 

  • Bohler S, Bagard M, Oufir M, Planchon S, Hoffmann L, Jolivet Y, Hausman JF, Dizengremel P, Renaut J (2007) A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics 7:1584–1599

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PL, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  PubMed  CAS  Google Scholar 

  • Boursiac Y, Chen S, Luu D-T, Sorieul M, Dries NVD, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805

    Google Scholar 

  • Buchet JP, Lauwerys R, Roels H, Bernard A, Bruaux P, Claeys F, Claeys F, Ducoffre G, Plaen PD, Staessen J, Amery A, Lijnen P, Thijs L, Rondia D, Sartor F, Remy AS, Nick L (1990) Renal effects of cadmium body burden of the general population. Lancet 336:699–702

    Article  PubMed  CAS  Google Scholar 

  • Burnett EC, Desikan R, Moser RC, Neill SJ (2000) ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. J Exp Bot 51:197–205

    Article  PubMed  CAS  Google Scholar 

  • Ca′novas D, Vooijs R, Schat H, Lorenzo V (2004) The role of thiol species in the hypertolerance of Aspergillus sp. P37 to arsenic. J Biol Chem 279:51234–51240

    Article  CAS  Google Scholar 

  • Cailliatte R, Lapeyre B, Briat JF, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Google Scholar 

  • Cohen CK, Garvin DF, Kochian LV (2004) Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil. Planta 218(5):784–792

    Article  PubMed  CAS  Google Scholar 

  • Connolly EL, Guerinot ML (2002) Iron stress in plants. Genome Biol 3(8):1024.1–1024.4

    Article  Google Scholar 

  • Courbot M, Willems G, Motte P, Arvidsson S (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065

    Article  PubMed  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotech 13:393–397

    Article  CAS  Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206

    Article  PubMed  CAS  Google Scholar 

  • DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with staking all on metabolism and expression. J Integr Plant Biol 50:1268–1280

    Article  PubMed  CAS  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5(6):663–667

    Article  PubMed  CAS  Google Scholar 

  • Deckert J (2008) Modulation of gene expression in plants exposed to heavy metals. In: Khan NA, Singh S (eds) Abiotic stress and plant responses. I.K. International Publishing House Pvt. Ltd., New Delhi, pp 125–138

    Google Scholar 

  • Delhaize EP, Ryan R (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    PubMed  CAS  Google Scholar 

  • Devez A, Ecterberg E, Gledhill M (2009) Metal ions binding properties of phytochelatins and related ligands. Met Ion life Sci 5:441–481

    Article  CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Harden PN (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1094–1095

    Article  CAS  Google Scholar 

  • Ding Y, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot. doi:10.1093/jxb/err046

    Google Scholar 

  • Dormer UH, Westwater J, McLaren NF, Kent NA, Mellor J, Jamieson DJ (2000) Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network. J Biol Chem 275:32611–32616

    Article  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  PubMed  CAS  Google Scholar 

  • Dubey S, Misra P, Dwivedi S, Chatterjee S, Bag SK, Mantri S, Asif MH, Rai A, Kumar S, Shri M, Tripathi P, Tripathi RD, Trivedi PK, Chakrabarty D, Tuli R (2010) Transcriptomic and metabolomic shifts in rice roots in response to Cr(VI) stress. BMC Genomics 11:648–667

    Article  PubMed  CAS  Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  PubMed  CAS  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) Proc Natl Acad Sci USA 93:5624–5628

    Article  PubMed  CAS  Google Scholar 

  • Faller P, Kienzler K, Kriequer-Liszkay A (2005) Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of photosystem II by competitive binding to the essential Ca2+ site. Biochim Biophys Acta 1706:158–164

    Article  PubMed  CAS  Google Scholar 

  • Farinati S, DolCorso G, Varotto S, Furini A (2010) The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol 185:964–978. doi:10.1111/j.1469-8137.2009.03132

    Article  PubMed  CAS  Google Scholar 

  • Fox TC, Guerinot ML (1998) Molecular biology of cation transport in plants. Annu Rev Plant Physiol Plant Mol Biol 49:669–696

    Article  PubMed  CAS  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  PubMed  CAS  Google Scholar 

  • Fusco N, Micheletto L, Dal Corso G, Borgato L, Furini A (2005a) Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot 6:3017–3027

    Article  Google Scholar 

  • Fusco N, Micheletto L, Dal Corso G, Borgato L, Furini A (2005b) Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot 56:3017–3027

    Article  PubMed  CAS  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Planta 25:1277–1285

    Article  CAS  Google Scholar 

  • Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Amelioration of cadmium stress in crop plants by nutrient management: morphological, physiological and biochemical aspects. Plant Stress 5(Special issue 1):1–23

    Google Scholar 

  • Gleba D, Borirjuk NV, Borisjuk LG, Gonden P (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci USA 96:5973–5977

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochem 69:2609–2615

    Article  CAS  Google Scholar 

  • Grün S, Lindermayr C, Sell S, Dumer J (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57:507–516

    Article  PubMed  CAS  Google Scholar 

  • Guerinot ML (2008) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2000) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  CAS  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:449–506

    Article  CAS  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    Article  PubMed  CAS  Google Scholar 

  • Hirotaka Y, Hiroyuki F, Tomohito A, Akio O, Tsukasa N, Koji M, Satomi N (2010) Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant Solanum torvum. J Exp Bot 61(2):423–437. doi:10.1093/jxb/erp313

    Article  CAS  Google Scholar 

  • Hoekenga OA, Maron LG, Piñeros MA, Cançado GM, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743

    Article  PubMed  CAS  Google Scholar 

  • Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26:867–874

    Article  PubMed  CAS  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    Article  PubMed  CAS  Google Scholar 

  • Imlay JA, Chin SM, Linn S (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640–642

    Article  PubMed  CAS  Google Scholar 

  • IUPAC (1997). Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Online corrected version: (2006) “Transition element”

  • Jensen WB (2003) The place of zinc, cadmium, and mercury in the periodic table”. J Chem Edu 80(8):952–961

    Article  CAS  Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen activated protein kinases pathways by copper and cadmium. Plant Physiol 136:3276–3283

    Article  PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Fischer M (2006) Functional aquaporin diversity in plants. Biochim Biophys Acta 1758:1134–1141

    Article  PubMed  CAS  Google Scholar 

  • Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8:2514–2530

    Article  PubMed  CAS  Google Scholar 

  • Kieffer P, Planchon S, Oufir M, Ziebel J, Dommes J, Hoffmann L, Hausman JF, Renaut J (2009a) Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. J Proteome Res 9:400–417

    Article  CAS  Google Scholar 

  • Kieffer P, Schröder P, Dommes J, Hoffmann L, Renaut J, Hausman JF (2009b) Proteomic and enzymatic response of poplar to cadmium stress. J Proteomics 72:379–396

    Article  PubMed  CAS  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50(2):207–218

    Article  PubMed  CAS  Google Scholar 

  • Knetsch MLW, Wang M, Snaar-Jagalska E, Heimovaara-Dijkstra S (1996) Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. Plant Cell 8:1061–1067

    Article  PubMed  CAS  Google Scholar 

  • Kopyra M, Stachon-Wilk M, Gwozdz EA (2006) Effects of exogenous nitric oxide on the antioxidant capacity of cadmium-treated soybean cell suspension. Acta Physiol Plant 28:525–536

    Article  CAS  Google Scholar 

  • Kovalchuk I, Titov V, Hohn B, Kovalchuk O (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res 570:149–161

    Article  PubMed  CAS  Google Scholar 

  • Kramer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  PubMed  CAS  Google Scholar 

  • LeDuc DL, AbdelSamie M, Montes-Bayon M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Poll 144:70–76

    Article  CAS  Google Scholar 

  • Li Y, Dankher OP, Carreira L, Jiang LX (2006) The shoot-specific expression of gamma-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141:288–298

    Article  PubMed  CAS  Google Scholar 

  • Lide DR (1992) CRC Handbook of Chemistry and Physics. In: Lide DR (ed) A ready-reference book of chemical and physical data, 73rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Lombi E, Zhao FJ, McGrath SP, Young SD, Sacchi GA (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53–60

    Article  CAS  Google Scholar 

  • Lund BO, Miller DM, Wood JS (1993) Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitrochondia. Biochem Pharmacol 45:2017–2024

    Article  PubMed  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculik PJ (2010) White root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  PubMed  CAS  Google Scholar 

  • Macek T, Mackova M, Pavlikova D, Szakova J, Truksa M, Cundy S, Kotrba P, Yancey N, Scouten WH (2002) Accumulation of cadmium by transgenic tobacco. Acta Biotechnol 22(1–2):101–106

    Google Scholar 

  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    Article  CAS  Google Scholar 

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162:1338–1346

    Article  PubMed  CAS  Google Scholar 

  • Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M, Kim JM, Kobayashi N, Toyoda T, Shinozaki K, Seki M (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using tilling array. Plant Cell Physiol 49:1135–1149

    Article  PubMed  CAS  Google Scholar 

  • McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Physiol Plant Mol Biol 50:695–718

    Article  PubMed  CAS  Google Scholar 

  • Meda AR, Scheuermann EB, Frechsl UE, Rough PD (2007) Iron acquisition by phytosiderophores contributes to cadmium tolerance. Plant Physiol 143:1761–1773

    Article  PubMed  CAS  Google Scholar 

  • Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res Int 16(2):162–175

    Article  PubMed  CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  PubMed  CAS  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    PubMed  CAS  Google Scholar 

  • Mills RF, Krijger GC, Baccarini PJ, Hall JL, Williams LE (2003) Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 35:164–176

    Article  PubMed  CAS  Google Scholar 

  • Minglin L, Yuxiu Z, Tuanyao C (2005) Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene 363:151–158

    Article  PubMed  CAS  Google Scholar 

  • Mithoefer A, Schulze B, Boland W (2004) Biotic and heavy metal stress in plants: evidence for common signals. FEBS Letts 566:1–5

    Article  CAS  Google Scholar 

  • Mori S, Uraguchi S, Ishikawa S, Arao T (2009) Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum. Environ Exp Bot 67:127–132

    Article  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126:62–71

    Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term ‘heavy metal’ by a biologically significant and chemically significant classification of metal ions. Environ Pollut B1:3–26

    Google Scholar 

  • Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian JC, Sacchi GA (2006) Heavy metal stress and sulphate uptake in maize roots. Plant Physiol 141:1138–1148

    Article  PubMed  CAS  Google Scholar 

  • Olmos E, Martõ Ânez-Solano JR, Piqueras A, Hellõ Ân E (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54(381):291–301

    Article  PubMed  CAS  Google Scholar 

  • Panda SK, Upadhyay RK, Nath S (2010) Arsenic stress in plants. J. Agro Crop Sci ISSN: 0931-2250

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Google Scholar 

  • Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 58:1717–1728

    Article  PubMed  CAS  Google Scholar 

  • Polle A, Schützendübel A (2004) Heavy metal signaling in plants: linking cellular and organismic responses. Plant Responses Abiotic Stress Top Curr Genet 4:187–215. doi:10.1007/978-3-540-39402-0-8

    Article  CAS  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, Toppi LSD, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta 223:180–190

    Article  PubMed  CAS  Google Scholar 

  • Qi X, Zhang Y, Chai T (2007) Characterization of a novel plant promoter specifically induced by heavy metal and identification of the promoter regions conferring heavy metal responsiveness. Plant Physiol 143:50–59

    Google Scholar 

  • Ramos J, Clemente MR, Naya L, Loscos J, Perez-Rontome C, Sato S, Tabata S, Becana M (2007) Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with different responses to cadmium and alternatively spiced variants. Plant Physiol 143:110–1118

    Article  CAS  Google Scholar 

  • Rao KVM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  Google Scholar 

  • Rivetta A, Negrini N, Coccuci M (1997) Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L) seed germination. Plant Cell Environ 20:600–608

    Article  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Rodriguez-Serrano M, Corpas FJ, Gomez M, del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2− and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Rodriguez-Serrano M, Gomez M, del Rio LA, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea. J Plant Physiol 164:1346–1357

    Article  PubMed  CAS  Google Scholar 

  • Roth U, von Roepenack-Lahaye E, Clemens S (2006) Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot 57:4003–4013

    Article  PubMed  CAS  Google Scholar 

  • Rucińska-Sobkowiak R, Pukacki PM (2006) Antioxidative defense system in lupin roots exposed to increasing concentrations of lead. Acta Physiol Plant 28(4):357–364. doi:10.1007/s11738-006-0032-z

    Article  Google Scholar 

  • Rutherford JC, Bird AJ (2004) Metal-Responsive Transcription factors that regulate copper homeostasis in. Eukaryot Cell 3(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    PubMed  CAS  Google Scholar 

  • Sanit`a di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Biol 41:105–130

    Article  Google Scholar 

  • Sanit`a di Toppi L, Prasad MNV, Ottonello S (2002) Metal chelating peptides and proteins in plants. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of heavy metal detoxification and tolerance in plants. Kluwer Acad Publishers, Dordrecht, 59–93

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198

    Article  PubMed  CAS  Google Scholar 

  • Savenstrad H, Strid A (2004) Six genes strongly regulated by mercury in Pisum sativum roots. Plant Physiol Biochem 42:135–142

    Article  CAS  Google Scholar 

  • Schröder P, Lyubenova L, Huber C (2009) Do HMs and metalloids influence the detoxification of organic xenobiotics in plants? Environ Sci Pollut Res Int 16(7):795–804

    Article  PubMed  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  CAS  Google Scholar 

  • Selvaraj A, Balamurugan K, Yepiskoposyan H, Zhou H, Egli D, Georgiev O, Thiele DJ, Schaffner W (2005) Metal-responsive transcription factor (MTF-1) handles extremes, copper load and copper starvation, by activating different genes. Genes Dev 19:891–896

    Article  PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R, Shao MA (2009) Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotech 29:131–151

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Ni FT, Guo DG, Li H, Li WX (2010) Perspective on phytoremediation for improving heavy metal-contaminated soils. Plant Adapt Phytorem Part 2:227–244. doi:10.1007/978-90-481-9370-7_11

    Article  Google Scholar 

  • Shi X, Dalal NS (1993) Vanadate mediated hydroxyl radical generation from superoxide radical in the presence of NADH: Heber Weiss versus Fenton mechanism. Biochem Biophys Acta 307:336–341

    CAS  Google Scholar 

  • Shi QH, Zhu ZJ (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exp Bot 63:317–326

    Article  CAS  Google Scholar 

  • Tamas L, Dudikova J, Durcekova K, Haluskova L, Huttova J, Mistrık I, Olle M (2008) Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J Plant Physiol 165:1193–1203

    Article  PubMed  CAS  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid dependent signal transduction pathway under drought and high-salinity. Proc Natl Acad Sci USA 97:11632–11637

    Article  PubMed  CAS  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki M (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:1–7

    Article  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  PubMed  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1986) Inhibition of photosynthesis in Phaseolus vulguris by treatment with toxic concentration of Zn effect on ribulose 1,5 bisphosphate carboxylase/oxygenase. J Plant Physiol 125:335–360

    Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opinion Plant Biol 12(3):364–372

    Article  CAS  Google Scholar 

  • Vergani L, Lanza C, Scarabelli L, Canesi L, Gallo G (2009) Heavy metal and growth hormone pathways in metallothionein regulation in fish RTH-149 cell line. Comp Biochem Physiol Part C 149:572–580

    Google Scholar 

  • Weast RC (1984) CRC handbook of chemistry and physics, 64th edn. CRC Press, Boca Raton

    Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963

    Article  PubMed  CAS  Google Scholar 

  • Wildner GF, Henkel J (1979) The effect of divalent metal ion the activity of Mg2+ depleted ribulose 1,5 bisphosphate oxygenase. Planta 146:223–228

    Article  CAS  Google Scholar 

  • Williams LE, Mills RF (2005) P1B-ATPases-an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Fu G, Tao L, Zhu C (2010) Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch Biochem Biophysics 497:13–20

    Article  CAS  Google Scholar 

  • Yamaguchi-Iwai Y, Serpe M, Haile D (1997) Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J Biol Chem 272:17711–17718

    Google Scholar 

  • Yang T, Poovaiah BW (2003) Calcium/calmodulin mediated signal network in plants. Trend Plant Sci 8:505–512

    Article  CAS  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of HM hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18(4):339–353

    Article  PubMed  CAS  Google Scholar 

  • Yeh C-M, Chien P-S, Huang H-J (2007) Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58(3):659–671

    Article  PubMed  CAS  Google Scholar 

  • Zago E, Morsa S, Dat JF, Alard P, Ferrarini A, Inzé D, Delledonne M, Breusegem FV (2007) Plant Physiol 141:404–411

    Article  CAS  Google Scholar 

  • Zawoznik M, Groppa M, Tomaro M, Benavides M (2007) Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci 173:190–197

    Article  CAS  Google Scholar 

  • Zhao H, Eide D (1996) The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA 93:2454–2458

    Article  PubMed  CAS  Google Scholar 

  • Zhu LH, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    Article  PubMed  CAS  Google Scholar 

  • Zurbriggen MD, Hajirezaei MR, Carrillo N (2010) Development of transgenic plants with enhanced tolerance to adverse environments. Biotechnol Genet Eng Rev 27:33–56

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors duly acknowledges the funding by Department of Biotechnology, Government of India under Program Support Project and the authors extend their gratitude to Bidyut and Yatindra, B.Tech students of IIT Guwahati for their artistic help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingaraj Sahoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thapa, G., Sadhukhan, A., Panda, S.K. et al. Molecular mechanistic model of plant heavy metal tolerance. Biometals 25, 489–505 (2012). https://doi.org/10.1007/s10534-012-9541-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9541-y

Keywords

Navigation