Skip to main content

Abiotic Stress Tolerance in Cereals Through Genome Editing

  • Chapter
  • First Online:
Omics Approach to Manage Abiotic Stress in Cereals

Abstract

Improving crop yield and developing new crop varieties are the top priorities in the twenty-first century due to its important agricultural and socioeconomic values. Recent revolutions in genome editing have paved the way to improve the desirable characteristics in various crops by targeting the related genes precisely. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) technology is a newly emerged, highly effective, and robust site-specific genome editing tool used for precise mutagenesis induction in various crop species. From comparison of this technology with two other currently used sequence-specific nuclease genome editing tools: transcription activator-like effector nucleases (TALENs) and zinc finger nucleases (ZFNs), we summarize that CRISPR-Cas technology has more potential to edit genomes efficiently. The availability of genome sequences for numerous crops, along with rapid advancements in genome editing techniques, has created opportunities to breed for almost any given desirable trait. CRISPR-Cas technology has recently been widely used to study the functions of several genes in different cereals including rice, wheat, and maize and to determine their potential in quality improvement. Designing of most efficient and accurate tools of CRIPSR has motivated and enabled researchers to modify cereal genes for improved traits. In addition to summarizing various experimental applications and successfully edited genes in cereals by single and multiplex gene editing systems of CRISPR-Cas technology for enhancing abiotic stress tolerance, we also highlight the diversity of proteins and mechanisms in these systems. We also consider future challenges and potential directions for research developments in the era of CRISPR-Cas technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander JL, Beagan K, Orr-Weaver TL, McVey M (2016) Multiple mechanisms contribute to double-strand break repair at rereplication forks in Drosophila follicle cells. PNAS 113(48):13809–13814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfatih A, Wu J, Jan SU, Zhang ZS, Xia JQ, Xiang CB (2020) Loss of rice Paraquat Tolerance 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. Plant Cell Environ 43(11):2743–2754

    Article  CAS  PubMed  Google Scholar 

  • Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1932

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhat MA, Mir RA, Kumar V, Shah AA, Zargar SM, Rahman S, Jan AT (2021) Mechanistic insights of CRISPR/Cas‐mediated genome editing towards enhancing abiotic stress tolerance in plants. Physiol Plant 172(2):1255–1268

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya A, Parkhi V, Char B (2020) CRISPR/Cas genome editing: strategies and potential for crop improvement. Springer Nature, Cham

    Book  Google Scholar 

  • Biswal AK, Mangrauthia SK, Reddy MR, Yugandhar P (2019) CRISPR mediated genome engineering to develop climate smart rice: challenges and opportunities. Semin Cell Dev Biol 96:100–106

    Article  CAS  PubMed  Google Scholar 

  • Bita C, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Bo W, Zhaohui Z, Huanhuan Z, Xia W, Binglin L, Lijia Y, Chunguo W (2019) Targeted mutagenesis of NAC transcription factor gene, OsNAC041, leading to salt sensitivity in rice. Rice Sci 26(2):98–108

    Article  Google Scholar 

  • Boscai M, Fita A (2020) Physiological and molecular characterization of crop resistance to abiotic stresses. Agronomy 10(9):1308

    Article  Google Scholar 

  • Butt H, Eid A, Ali Z, Atia MA, Mokhtar MM, Hassan N, Mahfouz MM (2017) Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Front Plant Sci 8:1441

    Article  PubMed  PubMed Central  Google Scholar 

  • Char SN, Yang B (2020) Genome editing in grass plants. aBIOTECH 1(1):41–57

    Article  Google Scholar 

  • Chaudhary S, Grover A, Sharma PC (2021) MicroRNAs: potential targets for developing stress-tolerant crops. Life 11(4):289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Niu Y, Ji W (2016) Genome editing in nonhuman primates: approach to generating human disease models. J Intern Med 280(3):246–251

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Hu Y, Vannozzi A, Wu K, Cai H, Qin Y, Zhang L (2017) The WRKY transcription factor family in model plants and crops. CRC Crit Rev Plant Sci 36(5–6):311–335

    Article  Google Scholar 

  • Chen R, Xu Q, Liu Y, Zhang J, Ren D, Wang G, Liu Y (2018) Generation of transgene-free maize male sterile lines using the CRISPR/Cas9 system. Front Plant Sci 9:1180

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Hu J, Dong L, Zeng D, Guo L, Zhang G, Qian Q (2020) The tolerance of salinity in rice requires the presence of a functional copy of FLN2. Biomolecules 10(1):17

    Article  CAS  Google Scholar 

  • Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4(6):723–728

    Article  CAS  PubMed  Google Scholar 

  • Dong F, Xie K, Chen Y, Yang Y, Mao Y (2017a) Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells. Biochem Biophys Res Commun 482(4):889–895

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Jin X, Tang Q, Zhang X, Yang J, Liu X, Wang Z (2017b) Development and event-specific detection of transgenic glyphosate-resistant rice expressing the G2-EPSPS gene. Front Plant Sci 8:885

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong H, Yan S, Liu J, Liu P, Sun J (2019) Ta COLD 1 defines a new regulator of plant height in bread wheat. Plant Biotechnol J 17(3):687–699

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Huang Y, Wang K (2021) The development of herbicide resistance crop plants using CRISPR/Cas9-mediated gene editing. Genes 12(6):912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan YB, Li J, Qin RY, Xu RF, Li H, Yang YC, Yang JB (2016) Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol Biol 90(1–2):49–62

    Article  CAS  PubMed  Google Scholar 

  • El-Mounadi K, Morales-Floriano ML, Garcia-Ruiz H (2020) Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Front Plant Sci 11:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Endo M, Mikami M, Toki S (2016) Biallelic gene targeting in rice. Plant Physiol 170(2):667–677

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Meng Q, Xu J, Tang H, Tang S, Zhang H, Huang J (2015) Knock-down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase with transcriptional activation activity confers abiotic stress tolerance through enhancing antioxidant protection in rice. Plant Mol Biol 87(4–5):441–458

    Article  CAS  PubMed  Google Scholar 

  • Farhat S, Jain N, Singh N, Sreevathsa R, Dash PK, Rai R, Jain A (2019) CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice. Semin Cell Dev Biol 96:91–99

    Article  CAS  PubMed  Google Scholar 

  • Fragkostefanakis S, Simm S, Paul P, Bublak D, Scharf KD, Schleiff E (2015) Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta‐analysis. Plant Cell Environ 38(4):693–709

    Article  CAS  PubMed  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganie SA, Wani SH, Henry R, Hensel G (2021) Improving rice salt tolerance by precision breeding in a new era. Curr Opin Plant Biol 60:101996

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Wang Y, Gruber MY, Hannoufa A (2018) miR156/SPL10 modulates lateral root development, branching and leaf morphology in Arabidopsis by silencing Agamous-Like 79. Front Plant Sci 8:2226

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta RM, Musunuru K (2014) Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Investig 124(10):4154–4161

    Article  PubMed  PubMed Central  Google Scholar 

  • Haque E, Taniguchi H, Hassan M, Bhowmik P, Karim MR, Śmiech M, Islam T (2018) Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Front Plant Sci 9:617

    Article  PubMed  PubMed Central  Google Scholar 

  • He M, He CQ, Ding NZ (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou X, Xie K, Yao J, Qi Z, Xiong L (2009) A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci 106(15):6410–6415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu XJ, Chen D, Lynne Mclntyre C, Fernanda Dreccer M, Zhang ZB, Drenth J, Kalaipandian S, Chang H, Xue GP (2018) Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA‐mediated regulatory pathway. Plant Cell Environ 41(1):79–98

    Article  CAS  PubMed  Google Scholar 

  • Hui L, Chang L, Zhao YH, Han XJ, Zhou ZW, Chen W, Li X (2018) Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts. J Integr Agric 17(2):406–414

    Article  Google Scholar 

  • Hunter MC, Smith RG, Schipanski ME, Atwood LW, Mortensen DA (2017) Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67(4):386–391

    Article  Google Scholar 

  • Hussain B, Lucas SJ, Budak H (2018) CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Brief Funct Genom 17(5):319–328

    CAS  Google Scholar 

  • Hussain A, Ding X, Alariqi M, Manghwar H, Hui F, Li Y, Cheng J, Wu C, Cao J, Jin S (2021) Herbicide resistance: another hot agronomic trait for plant genome editing. Plants 10(4):621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson SA (2016) Rice: the first crop genome. Rice 9(1):1–3

    Article  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayavaradhan R, Pillis DM, Goodman M, Zhang F, Zhang Y, Andreassen PR, Malik P (2019) CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nat Commun 10(1):1–13

    Article  CAS  Google Scholar 

  • Jiang M, Liu Y, Li R, Li S, Tan Y, Huang J, Shu Q (2021) An inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase 1 mutant with a 33-nt deletion showed enhanced tolerance to salt and drought stress in rice. Plants 10(1):23

    Article  CAS  Google Scholar 

  • Jin H, Joo H, Lee K, Kim H, Didier R, Yang Y, Lee C (2019) Streamlined procedure for gene knockouts using all-in-one adenoviral CRISPR-Cas9. Sci Rep 9(1):1–13

    Google Scholar 

  • Jun R, Xixun H, Kejian W, Chun W (2019) Development and application of CRISPR/Cas system in rice. Rice Sci 26(2):69–76

    Article  Google Scholar 

  • Kapoor D, Bhardwaj S, Landi M, Sharma A, Ramakrishnan M, Sharma A (2020) The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. Appl Sci 10(16):5692

    Article  CAS  Google Scholar 

  • Khan I, Mohamed S, Regnault T, Mieulet D, Guiderdoni E, Sentenac H, Véry AA (2020) Constitutive contribution by the rice OsHKT1; 4 Na+ transporter to xylem sap desalinization and low Na+ accumulation in young leaves under low as high external Na+ conditions. Front Plant Sci 11:1130

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan I, Khan S, Zhang Y, Zhou J (2021a) Genome-wide analysis and functional characterization of the Dof transcription factor family in rice (Oryza sativa L.). Planta 253(5):1–14

    Article  CAS  Google Scholar 

  • Khan I, Khan S, Zhang Y, Zhou J, Akhoundian M, Jan SA (2021b) CRISPR-Cas technology based genome editing for modification of salinity stress tolerance responses in rice (Oryza sativa L.). Mol Biol Rep 48:3605–3615

    Article  CAS  PubMed  Google Scholar 

  • Khatodia S, Bhatotia K, Passricha N, Khurana S, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7:506

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genom 18(1):31–41

    Article  CAS  Google Scholar 

  • Kumar VS, Verma RK, Yadav SK, Yadav P, Watts A, Rao M, Chinnusamy V (2020) CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol Mol Biol Plants 26(6):1099

    Article  CAS  Google Scholar 

  • Lacchini E, Kiegle E, Castellani M, Adam H, Jouannic S, Gregis V, Kater MM (2020) CRISPR-mediated accelerated domestication of African rice landraces. PLoS One 15(3):e0229782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CM, Cradick TJ, Fine EJ, Bao G (2016) Nuclease target site selection for maximizing on-target activity and minimizing off-target effects in genome editing. Mol Therapy 24(3):475–487

    Article  CAS  Google Scholar 

  • Li M, Li X, Zhou Z, Wu P, Fang M, Pan X, Li H (2016) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci 7:377

    PubMed  PubMed Central  Google Scholar 

  • Li S, Li J, Zhang J, Du W, Fu J, Sutar S, Xia L (2018) Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice. J Exp Bot 69(20):4715–4721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X (2020) Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Therapy 5(1):1–23

    Article  Google Scholar 

  • Liao S, Qin X, Luo L, Han Y, Wang X, Usman B, Li R (2019) CRISPR/Cas9-induced mutagenesis of semi-rolled Leaf1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in Rice (Oryza sativa L.). Agronomy 9(11):728

    Article  CAS  Google Scholar 

  • Liu F, Wang P, Zhang X, Li X, Yan X, Fu D, Wu G (2018) The genetic and molecular basis of crop height based on a rice model. Planta 247(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wu D, Shan T, Xu S, Qin R, Li H, Li J (2020) The trihelix transcription factor OsGTγ-2 is involved adaption to salt stress in rice. Plant Mol Biol 103:545–560

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Yang F, Zhang J, Liu H, Rahman S, Islam S, She M (2021) Application of CRISPR/Cas9 in crop quality improvement. Int J Mol Sci 22(8):4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993

    Article  PubMed  PubMed Central  Google Scholar 

  • Lou D, Wang H, Yu D (2018) The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice. BMC Plant Biol 18(1):1–17

    Article  CAS  Google Scholar 

  • Maggio I, Goncalves MA (2015) Genome editing at the crossroads of delivery, specificity, and fidelity. Trends Biotechnol 33(5):280–291

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Botella JR, Liu Y, Zhu JK (2019) Gene editing in plants: progress and challenges. Natl Sci Rev 6(3):421–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mare C, Mazzucotelli E, Crosatti C, Francia E, Cattivelli L (2004) Hv-WRKY38: a new transcription factor involved in cold-and drought-response in barley. Plant Mol Biol 55(3):399–416

    Article  CAS  PubMed  Google Scholar 

  • Mashingaidze K (2006) Maize research and development. In: Rukuni M, Tawonezvi P, Eicher C (eds) Zimbabwe’s agricultural revolution revisited. University of Zimbabwe Publications, Harare, pp 357–376

    Google Scholar 

  • Mei Y, Wang Y, Chen H, Sun ZS, Ju XD (2016) Recent progress in CRISPR/Cas9 technology. J Genet Genom 43(2):63–75

    Article  Google Scholar 

  • Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: recent advances, challenges, and future implications. Front Plant Sci 9:1361

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra R, Joshi RK, Zhao K (2020) Base editing in crops: current advances, limitations and future implications. Plant Biotechnol J 18(1):20–31

    Article  PubMed  Google Scholar 

  • Nadeem M, Li J, Wang M, Shah L, Lu S, Wang X, Ma C (2018) Unraveling field crops sensitivity to heat stress: mechanisms, approaches, and future prospects. Agronomy 8(7):128

    Article  CAS  Google Scholar 

  • Ni Z, Li H, Zhao Y, Peng H, Hu Z, Xin M, Sun Q (2018) Genetic improvement of heat tolerance in wheat: recent progress in understanding the underlying molecular mechanisms. Crop J 6(1):32–41

    Article  Google Scholar 

  • Oh Y, Lee B, Kim H, Kim SG (2020) A multiplex guide RNA expression system and its efficacy for plant genome engineering. Plant Methods 16(1):1–11

    Article  CAS  Google Scholar 

  • Oleszkiewicz T, Klimek-Chodacka M, Kruczek M, Godel-Jędrychowska K, Sala K, Milewska-Hendel A, Baranski R (2021) Inhibition of carotenoid biosynthesis by CRISPR/Cas9 triggers cell wall remodelling in carrot. Int J Mol Sci 22(12):6516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56(3):389–400

    Article  CAS  PubMed  Google Scholar 

  • Parkash V, Singh S (2020) A review on potential plant-based water stress indicators for vegetable crops. Sustainability 12(10):3945

    Article  CAS  Google Scholar 

  • Paul S, Roychoudhury A (2019) Transcript analysis of abscisic acid-inducible genes in response to different abiotic disturbances in two indica rice varieties. Theor Exp Plant Physiol 31:249–272

    Article  CAS  Google Scholar 

  • Paul MJ, Watson A, Griffiths CA (2020) Linking fundamental science to crop improvement through understanding source and sink traits and their integration for yield enhancement. J Exp Bot 71(7):2270–2280

    Article  CAS  PubMed  Google Scholar 

  • Phukan UJ, Jeena GS, Shukla RK (2016) WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci 7:760

    Article  PubMed  PubMed Central  Google Scholar 

  • Porteus M (2016) Genome editing: a new approach to human therapeutics. Annu Rev Pharmacol Toxicol 56:163–190

    Article  CAS  PubMed  Google Scholar 

  • Prior KK, Leisegang MS, Josipovic I, Löwe O, Shah AM, Weissmann N, Brandes RP (2016) CRISPR/Cas9-mediated knockout of p22phox leads to loss of Nox1 and Nox4, but not Nox5 activity. Redox Biol 9:287–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8(2):34

    Article  CAS  PubMed Central  Google Scholar 

  • Razzaq A, Saleem F, Kanwal M, Mustafa G, Yousaf S, Arshad I, Joyia FA (2019) Modern trends in plant genome editing: an inclusive review of the CRISPR/Cas9 toolbox. Int J Mol Sci 20(16):4045

    Article  CAS  PubMed Central  Google Scholar 

  • Ricachenevsky FK, Sperotto RA, Menguer PK, Fett JP (2010) Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence. Mol Biol Rep 37(8):3735–3745

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Datta K, Datta SK (2011) Abiotic stress in plants: from genomics to metabolomics. In: Tuteja N, Gill SS, Tuteja R (Eds.). Omics and plant abiotic stress tolerance, Bentham Science Publishers Al Sharjah, Pp. 91-120

    Chapter  Google Scholar 

  • Rozov SM, Permyakova NV, Deineko EV (2019) The problem of the low rates of CRISPR/Cas9-mediated knock-ins in plants: approaches and solutions. Int J Mol Sci 20(13):3371

    Article  CAS  PubMed Central  Google Scholar 

  • Rusk N (2014) CRISPRs and epigenome editing. Nat Methods 11(1):28–28

    Article  CAS  PubMed  Google Scholar 

  • Sahebi M, Hanafi MM, Rafii M, Mahmud T, Azizi P, Osman M, Shabanimofrad M (2018) Improvement of drought tolerance in rice (Oryza sativa L.): genetics, genomic tools, and the WRKY gene family. Biomed Res Int 2018:3158474

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakuma T, Woltjen K (2014) Nuclease‐mediated genome editing: at the front‐line of functional genomics technology. Develop Growth Differ 56(1):2–13

    Article  CAS  Google Scholar 

  • Sauer NJ, Narváez-Vásquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ, Sanders SL (2016) Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 170(4):1917–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra TS, Figueiredo DD, Cordeiro AM, Almeida DM, Lourenço T, Abreu IA, Oliveira MM (2013) OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Mol Biol 82(4–5):439–455

    Article  CAS  PubMed  Google Scholar 

  • Shahid SA, Zaman M, Heng L (2018) Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, Cham, pp 1–42

    Google Scholar 

  • Shahzad R, Jamil SA, Nisar A, Amina Z, Saleem S, Iqbal MZ, Wang X (2021) Harnessing the potential of plant transcription factors in developing climate resilient crops to improve global food security: current and future perspectives. Saudi J Biol Sci 28(4):2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, Zheng X (2013) Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant 6(4):1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugavadivel P, Prakash C, Mithra SA (2019) Molecular approaches for dissecting and improving drought and heat tolerance in rice. In: Advances in rice research for abiotic stress tolerance. Elsevier, Amsterdam, pp 839–867

    Chapter  Google Scholar 

  • Shen C, Que Z, Xia Y, Tang N, Li D, He R, Cao M (2017) Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J Plant Biol 60(6):539–547

    Article  CAS  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Habben JE (2017) ARGOS 8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216

    Article  CAS  PubMed  Google Scholar 

  • Shim JS, Oh N, Chung PJ, Kim YS, Choi YD, Kim JK (2018) Overexpression of OsNAC14 improves drought tolerance in rice. Front Plant Sci 9:310

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Li J, Xia L (2016) Precise genome modification via sequence-specific nucleases-mediated gene targeting for crop improvement. Front Plant Sci 7:1928

    Article  PubMed  PubMed Central  Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang X, Zheng X, Qi Y, Zhang D, Cheng Y, Tang A, Zhang Y (2016) A single transcript CRISPR-Cas9 system for efficient genome editing in plants. Mol Plant 9(7):1088–1091

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, Shao Y (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7(1):1–12

    Article  CAS  Google Scholar 

  • Truman AW (2018) Endogenous epitope tagging of heat shock protein 70 isoform Hsc70 using CRISPR/Cas9. Cell Stress Chaperones 23(3):347–355

    Article  PubMed  CAS  Google Scholar 

  • Tsuji S, Imanishi M (2019) Modified nucleobase-specific gene regulation using engineered transcription activator-like effectors. Adv Drug Deliv Rev 147:59–65

    Article  PubMed  CAS  Google Scholar 

  • Turchiano G, Blattner G, Cavazza A, Thrasher A (2020) Gene editing and genotoxicity: targeting the off-targets. Front Genome Ed 2:22

    Google Scholar 

  • Usman B, Nawaz G, Zhao N, Liao S, Liu Y, Li R (2020) Precise editing of the ospyl9 gene by rna-guided cas9 nuclease confers enhanced drought tolerance and grain yield in rice (Oryza sativa l.) by regulating circadian rhythm and abiotic stress responsive proteins. Int J Mol Sci 21(21):7854

    Article  CAS  PubMed Central  Google Scholar 

  • Valverde-Arias O, Garrido A, Valencia JL, Tarquis AM (2018) Using geographical information system to generate a drought risk map for rice cultivation: case study in Babahoyo canton (Ecuador). Biosyst Eng 168:26–41

    Article  Google Scholar 

  • Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11(4):e0154027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang CT, Ru JN, Liu YW, Yang JF, Li M, Xu ZS, Fu JD (2018a) The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis. Int J Mol Sci 19(9):2580

    Article  PubMed Central  CAS  Google Scholar 

  • Wang M, Mao Y, Lu Y, Wang Z, Tao X, Zhu JK (2018b) Multiplex gene editing in rice with simplified CRISPR‐Cpf1 and CRISPR‐Cas9 systems. J Integr Plant Biol 60(8):626–631

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Zhang H, Zhu H (2019) CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Hortic Res 6(1):1–13

    Article  CAS  Google Scholar 

  • Wang B, Zhong Z, Wang X, Han X, Yu D, Wang C, Zhang Y (2020) Knockout of the OsNAC006 transcription factor causes drought and heat sensitivity in rice. Int J Mol Sci 21(7):2288

    Article  CAS  PubMed Central  Google Scholar 

  • Waryah CB, Moses C, Arooj M, Blancafor P (2018) Zinc fingers, TALEs, and CRISPR systems: a comparison of tools for epigenome editing. Epigenome Edit 1767:19–63

    Article  CAS  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. PNAS 112(11):3570–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Li Z (2020) CRISPR-Cas systems: overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol 18:2401–2415

    Article  CAS  Google Scholar 

  • Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice 7(1):1–4

    Article  CAS  Google Scholar 

  • Xu K, Chen S, Li T, Ma X, Liang X, Ding X, Luo L (2015a) OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol 15(1):1–13

    Article  CAS  Google Scholar 

  • Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, Yang JB (2015b) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep 5(1):1–10

    Google Scholar 

  • Xue GP, Drenth J, McIntyre CL (2015) TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J Exp Bot 66(3):1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30(3):515–527

    Article  CAS  Google Scholar 

  • Yeh CD, Richardson CD, Corn JE (2019) Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 21(12):1468–1478

    Article  CAS  PubMed  Google Scholar 

  • Yin K, Gao C, Qiu JL (2017) Progress and prospects in plant genome editing. Nat Plants 3(8):1–6

    Article  CAS  Google Scholar 

  • Zaidi SS, Mahas A, Vanderschuren H, Mahfouz MM (2020) Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biol 21(1):1–19

    Article  Google Scholar 

  • Zang X, Geng X, Wang F, Liu Z, Zhang L, Zhao Y, Tian X, Ni Z, Yao Y, Xin M, Hu Z (2017) Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biol 17(1):1–13

    Article  CAS  Google Scholar 

  • Zang X, Geng X, He K, Wang F, Tian X, Xin M, Yao Y, Hu Z, Ni Z, Sun Q, Peng H (2018) Overexpression of the wheat (Triticum aestivum L.) TaPEPKR2 gene enhances heat and dehydration tolerance in both wheat and Arabidopsis. Front Plant Sci 9:1710

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng DD, Yang CC, Qin R, Alamin M, Yue EK, Jin XL, Shi CH (2018) A guanine insert in OsBBS1 leads to early leaf senescence and salt stress sensitivity in rice (Oryza sativa L.). Plant Cell Rep 37(6):933–946

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Wen J, Zhao W, Wang Q, Huang W (2020) Rational improvement of Rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas9 system. Front Plant Sci 10:1663

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang J, Lang Z, Botella JR, Zhu JK (2017a) Genome editing principles and applications for functional genomics research and crop improvement. Crit Rev Plant 36(4):291–309

    Article  Google Scholar 

  • Zhang L, Geng X, Zhang H, Zhou C, Zhao A, Wang F, Zhao Y, Tian X, Hu Z, Xin M, Yao Y (2017b) Isolation and characterization of heat-responsive gene TaGASR1 from wheat (Triticum aestivum L.). J Plant Biol 60(1):57–65

    Article  CAS  Google Scholar 

  • Zhang Y, Massel K, Godwin ID, Gao C (2018) Applications and potential of genome editing in crop improvement. Genome Biol 19(1):1–11

    Article  CAS  Google Scholar 

  • Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Wang J (2019a) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed 39(3):1–10

    Article  CAS  Google Scholar 

  • Zhang C, Srivastava AK, Sadanandom A (2019b) Targeted mutagenesis of the SUMO protease, Overly Tolerant to Salt1 in rice through CRISPR/Cas9-mediated genome editing reveals a major role of this SUMO protease in salt tolerance. BioRxiv:555706

    Google Scholar 

  • Zhang HX, Zhang Y, Yin H (2019c) Genome editing with mRNA encoding ZFN, TALEN, and Cas9. Mol Ther 27(4):735–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42(17):10903–10914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Deng K, Cheng Y, Zhong Z, Tian L, Tang X, Qi Y (2017) CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Front Plant Sci 8:1598

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo ZF, Kang HG, Park MY, Jeong H, Sun HJ, Yang DH, Lee HY (2019) Overexpression of ICE1, a regulator of cold-induced transcriptome, confers cold tolerance to transgenic Zoysia japonica. J Plant Biol 62(2):137–146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazal Akbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, I., Zhang, Y., Akbar, F., Khan, J. (2022). Abiotic Stress Tolerance in Cereals Through Genome Editing. In: Roychoudhury, A., Aftab, T., Acharya, K. (eds) Omics Approach to Manage Abiotic Stress in Cereals. Springer, Singapore. https://doi.org/10.1007/978-981-19-0140-9_12

Download citation

Publish with us

Policies and ethics