Skip to main content

Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing

  • Protocol
  • First Online:
Epigenome Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1767))

Abstract

The completion of genome, epigenome, and transcriptome mapping in multiple cell types has created a demand for precision biomolecular tools that allow researchers to functionally manipulate DNA, reconfigure chromatin structure, and ultimately reshape gene expression patterns. Epigenetic editing tools provide the ability to interrogate the relationship between epigenetic modifications and gene expression. Importantly, this information can be exploited to reprogram cell fate for both basic research and therapeutic applications. Three different molecular platforms for epigenetic editing have been developed: zinc finger proteins (ZFs), transcription activator-like effectors (TALEs), and the system of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins. These platforms serve as custom DNA-binding domains (DBDs), which are fused to epigenetic modifying domains to manipulate epigenetic marks at specific sites in the genome. The addition and/or removal of epigenetic modifications reconfigures local chromatin structure, with the potential to provoke long-lasting changes in gene transcription. Here we summarize the molecular structure and mechanism of action of ZF, TALE, and CRISPR platforms and describe their applications for the locus-specific manipulation of the epigenome. The advantages and disadvantages of each platform will be discussed with regard to genomic specificity, potency in regulating gene expression, and reprogramming cell phenotypes, as well as ease of design, construction, and delivery. Finally, we outline potential applications for these tools in molecular biology and biomedicine and identify possible barriers to their future clinical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waddington CH (1942) The epigenotype. Endeavour 1:18–20

    Google Scholar 

  2. Morris J (2001) Genes, genetics, and epigenetics: a correspondence. Science 293(5532):1103–1105

    Article  PubMed  Google Scholar 

  3. McGhee J, Felsenfeld G (1980) Nucleosome structure. Annu Rev Biochem 49(1):1115–1156

    Article  CAS  PubMed  Google Scholar 

  4. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389(6648):251–260

    Article  CAS  PubMed  Google Scholar 

  5. Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11(4):285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126(6):1189–1201

    Article  CAS  PubMed  Google Scholar 

  7. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39(1):61–69

    Article  CAS  PubMed  Google Scholar 

  8. Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    Article  CAS  PubMed  Google Scholar 

  9. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim T-K, Koche RP (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo Q-M (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74

    Article  CAS  Google Scholar 

  13. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B (2012) The accessible chromatin landscape of the human genome. Nature 489(7414):75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schübeler D (2015) Function and information content of DNA methylation. Nature 517(7534):321–326

    Article  PubMed  CAS  Google Scholar 

  15. Wu TP, Wang T, Seetin MG, Lai Y, Zhu S, Lin K, Liu Y, Byrum SD, Mackintosh SG, Zhong M (2016) DNA methylation on N 6-adenine in mammalian embryonic stem cells. Nature 532(7599):329–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lister R, Ecker JR (2009) Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res 19(6):959–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Schöler A, van Nimwegen E, Wirbelauer C, Oakeley EJ, Gaidatzis D (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480(7378):490–495

    CAS  PubMed  Google Scholar 

  18. Hon GC, Rajagopal N, Shen Y, McCleary DF, Yue F, Dang MD, Ren B (2013) Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet 45(10):1198–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341(6146):1237905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LT-Y, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500(7463):477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baubec T, Ivánek R, Lienert F, Schübeler D (2013) Methylation-dependent and-independent genomic targeting principles of the MBD protein family. Cell 153(2):480–492

    Article  CAS  PubMed  Google Scholar 

  22. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  CAS  PubMed  Google Scholar 

  23. Chédin F, Lieber MR, Hsieh C-L (2002) The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A 99(26):16916–16921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gowher H, Stockdale CJ, Goyal R, Ferreira H, Owen-Hughes T, Jeltsch A (2005) De novo methylation of nucleosomal DNA by the mammalian Dnmt1 and Dnmt3A DNA methyltransferases. Biochemist 44(29):9899–9904

    Article  CAS  Google Scholar 

  25. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C, Münzel M, Wagner M, Müller M, Khan F (2013) Dynamic readers for 5-(hydroxy) methylcytosine and its oxidized derivatives. Cell 152(5):1146–1159

    Article  CAS  PubMed  Google Scholar 

  28. Maunakea AK, Chepelev I, Cui K, Zhao K (2013) Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res 23(11):1256–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hackett JA, Reddington JP, Nestor CE, Dunican DS, Branco MR, Reichmann J, Reik W, Surani MA, Adams IR, Meehan RR (2012) Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline. Development 139(19):3623–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ziller MJ, Müller F, Liao J, Zhang Y, Gu H, Bock C, Boyle P, Epstein CB, Bernstein BE, Lengauer T (2011) Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet 7(12):e1002389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tomizawa S, Kobayashi H, Watanabe T, Andrews S, Hata K, Kelsey G, Sasaki H (2011) Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development 138(5):811–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  PubMed  Google Scholar 

  33. Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839(8):627–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, Weisenberger DJ, Egger G, Takai D, Gonzales FA (2004) Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci U S A 101(19):7357–7362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tropberger P, Schneider R (2013) Scratching the (lateral) surface of chromatin regulation by histone modifications. Nat Struct Mol Biol 20(6):657–661

    Article  CAS  PubMed  Google Scholar 

  36. Tessarz P, Kouzarides T (2014) Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 15(11):703–708

    Article  CAS  PubMed  Google Scholar 

  37. Kebede AF, Schneider R, Daujat S (2015) Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS J 282(9):1658–1674

    Article  CAS  PubMed  Google Scholar 

  38. Lawrence M, Daujat S, Schneider R (2016) Lateral thinking: how histone modifications regulate gene expression. Trends Genet 32(1):42–56

    Article  CAS  PubMed  Google Scholar 

  39. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    Article  CAS  PubMed  Google Scholar 

  40. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh T-Y, Peng W, Zhang MQ (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Suganuma T, Workman JL (2011) Signals and combinatorial functions of histone modifications. Annu Rev Biochem 80:473–499

    Article  CAS  PubMed  Google Scholar 

  42. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304

    Article  CAS  PubMed  Google Scholar 

  43. Miller JL, Grant PA (2013) The role of DNA methylation and histone modifications in transcriptional regulation in humans. Subcell Biochem 61:289–317

    Article  CAS  PubMed  Google Scholar 

  44. Henikoff S, Smith MM (2015) Histone variants and epigenetics. Cold Spring Harb Perspect Biol 7(1):a019364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61:24R–29R

    Article  CAS  PubMed  Google Scholar 

  46. Li G, Reinberg D (2011) Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 21(2):175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou H-L, Luo G, Wise JA, Lou H (2014) Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res 42(2):701–713

    Article  CAS  PubMed  Google Scholar 

  48. Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen C-A, Schmitt AD, Espinoza CA, Ren B (2013) A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503(7475):290–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19(5):698–711

    Article  CAS  PubMed  Google Scholar 

  50. Jakovcevski M, Akbarian S (2012) Epigenetic mechanisms in neurological disease. Nat Med 18(8):1194–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21

    Article  CAS  PubMed  Google Scholar 

  52. Kelly TK, De Carvalho DD, Jones PA (2010) Epigenetic modifications as therapeutic targets. Nat Biotechnol 28(10):1069–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70(1):81–120

    Article  CAS  PubMed  Google Scholar 

  54. Rhee I, Jair K-W, Yen R-WC, Lengauer C, Herman JG, Kinzler KW, Vogelstein B, Baylin SB, Schuebel KE (2000) CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 404(6781):1003–1007

    Article  CAS  PubMed  Google Scholar 

  55. de Groote ML, Verschure PJ, Rots MG (2012) Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 40(21):10596–10613. https://doi.org/10.1093/nar/gks863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stolzenburg S, Goubert D, Rots MG (2016) Rewriting DNA methylation signatures at will: the curable genome within reach? Adv Exp Med Biol 945:475–490

    Article  CAS  PubMed  Google Scholar 

  57. Kungulovski G, Jeltsch A (2016) Epigenome editing: state of the art, concepts, and perspectives. Trends Genet 32(2):101–113

    Article  CAS  PubMed  Google Scholar 

  58. Hall DB, Struhl K (2002) The VP16 activation domain interacts with multiple transcriptional components as determined by protein-protein cross-linking in vivo. J Biol Chem 277(48):46043–46050

    Article  CAS  PubMed  Google Scholar 

  59. Lupo A, Cesaro E, Montano G, Zurlo D, Izzo P, Costanzo P (2013) KRAB-zinc finger proteins: a repressor family displaying multiple biological functions. Curr Genomics 14(4):268–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cano-Rodriguez D, Rots MG (2016) Epigenetic editing: on the verge of reprogramming gene expression at will. Curr Genet Med Rep 4(4):170–179

    Article  PubMed  PubMed Central  Google Scholar 

  61. Persikov AV, Osada R, Singh M (2009) Predicting DNA recognition by Cys2His2 zinc finger proteins. Bioinformatics 25(1):22–29

    Article  CAS  PubMed  Google Scholar 

  62. Emerson RO, Thomas JH (2009) Adaptive evolution in zinc finger transcription factors. PLoS Genet 5(1):e1000325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231

    Article  CAS  PubMed  Google Scholar 

  64. Zhang M, Wang F, Li S, Wang Y, Bai Y, Xu X (2014) TALE: a tale of genome editing. Prog Biophys Mol Biol 114(1):25–32

    Article  CAS  PubMed  Google Scholar 

  65. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Miller J, McLachlan A, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4(6):1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Najafabadi HS, Mnaimneh S, Schmitges FW, Garton M, Lam KN, Yang A, Albu M, Weirauch MT, Radovani E, Kim PM (2015) C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nat Biotechnol 33(5):555–562

    Article  CAS  PubMed  Google Scholar 

  68. Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33(18):5978–5990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Krishna SS, Majumdar I, Grishin NV (2003) Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31(2):532–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Elrod-Erickson M, Rould MA, Nekludova L, Pabo CO (1996) Zif268 protein–DNA complex refined at 1.6 Å: a model system for understanding zinc finger–DNA interactions. Structure 4(10):1171–1180

    Article  CAS  PubMed  Google Scholar 

  71. Moore M, Klug A, Choo Y (2001) Improved DNA binding specificity from polyzinc finger peptides by using strings of two-finger units. Proc Natl Acad Sci U S A 98(4):1437–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Blancafort P, Steinberg SV, Paquin B, Klinck R, Scott JK, Cedergren R (1999) The recognition of a noncanonical RNA base pair by a zinc finger protein. Chem Biol 6(8):585–597

    Article  CAS  PubMed  Google Scholar 

  73. Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252(5007):809

    Article  CAS  PubMed  Google Scholar 

  74. Wu H, Yang W-P, Barbas CF (1995) Building zinc fingers by selection: toward a therapeutic application. Proc Natl Acad Sci U S A 92(2):344–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Isalan M, Choo Y, Klug A (1997) Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proc Natl Acad Sci U S A 94(11):5617–5621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fairall L, Schwabe JW, Chapman L, Finch JT, Rhodes D (1993) The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. Nature 366(6454):483–487

    Article  CAS  PubMed  Google Scholar 

  77. Segal DJ, Beerli RR, Blancafort P, Dreier B, Effertz K, Huber A, Koksch B, Lund CV, Magnenat L, Valente D (2003) Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemist 42(7):2137–2148

    Article  CAS  Google Scholar 

  78. Jantz D, Amann BT, Gatto GJ, Berg JM (2004) The design of functional DNA-binding proteins based on zinc finger domains. Chem Rev 104(2):789–800

    Article  CAS  PubMed  Google Scholar 

  79. Elrod-Erickson M, Pabo CO (1999) Binding studies with mutants of Zif268. Contribution of individual side chains to binding affinity and specificity in the Zif268 zinc finger-DNA complex. J Biol Chem 274(27):19281–19285

    Article  CAS  PubMed  Google Scholar 

  80. Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29(1):183–212

    Article  CAS  PubMed  Google Scholar 

  81. Pavletich N, Pabo CO (1993) Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science 261:1701–1707

    Article  CAS  PubMed  Google Scholar 

  82. Kinzler KW, Vogelstein B (1990) The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol 10(2):634–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rebar EJ, Pabo CO (1994) Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263(5147):671–673

    Article  CAS  PubMed  Google Scholar 

  84. Choo Y, Klug A (1994) Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc Natl Acad Sci U S A 91(23):11163–11167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jamieson AC, Kim S-H, Wells JA (1994) In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemist 33(19):5689–5695

    Article  CAS  Google Scholar 

  86. Dreier B, Beerli RR, Segal DJ, Flippin JD, Barbas CF (2001) Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem 276(31):29466–29478

    Article  CAS  PubMed  Google Scholar 

  87. Segal DJ, Dreier B, Beerli RR, Barbas CF (1999) Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci U S A 96(6):2758–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cheng X, Boyer JL, Juliano R (1997) Selection of peptides that functionally replace a zinc finger in the Sp1 transcription factor by using a yeast combinatorial library. Proc Natl Acad Sci U S A 94(25):14120–14125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bhakta MS, Segal DJ (2010) The generation of zinc finger proteins by modular assembly. Methods Mol Biol 649:3–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Desjarlais JR, Berg JM (1993) Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc Natl Acad Sci U S A 90(6):2256–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Beerli RR, Segal DJ, Dreier B, Barbas CF (1998) Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci U S A 95(25):14628–14633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Joung JK, Ramm EI, Pabo CO (2000) A bacterial two-hybrid selection system for studying protein–DNA and protein–protein interactions. Proc Natl Acad Sci U S A 97(13):7382–7387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Choo Y, Isalan M (2000) Advances in zinc finger engineering. Curr Opin Struct Biol 10(4):411–416

    Article  CAS  PubMed  Google Scholar 

  94. Segal DJ, Barbas CF (2001) Custom DNA-binding proteins come of age: polydactyl zinc-finger proteins. Curr Opin Biotechnol 12(6):632–637

    Article  CAS  PubMed  Google Scholar 

  95. Beerli RR, Barbas CF (2002) Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol 20(2):135–141

    Article  CAS  PubMed  Google Scholar 

  96. Mandell JG, Barbas CF (2006) Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res 34:W516–W523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M, Fu F, Porteus MH, Dobbs D, Voytas DF (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 1(4):1637–1652

    Article  PubMed  Google Scholar 

  98. Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK (2009) Oligomerized pool engineering (OPEN): an 'open-source' protocol for making customized zinc-finger arrays. Nat Protoc 4(10):1471–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gonzalez B, Schwimmer LJ, Fuller RP, Ye Y, Asawapornmongkol L, Barbas CF (2010) Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc 5(4):791–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang L, Lin J, Zhang T, Xu K, Ren C, Zhang Z (2013) Simultaneous screening and validation of effective zinc finger nucleases in yeast. PLoS One 8(5):e64687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Iuchi S (2005) C2H2 zinc fingers as DNA binding domains. In: Iuchi S, Kuldell N (eds) Zinc finger proteins: from atomic contact to cellular function. Springer US, Boston, MA, pp 7–13

    Chapter  Google Scholar 

  102. Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70(1):313–340

    Article  CAS  PubMed  Google Scholar 

  103. Beerli RR, Dreier B, Barbas CF (2000) Positive and negative regulation of endogenous genes by designed transcription factors. Proc Natl Acad Sci U S A 97(4):1495–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Beltran A, Parikh S, Liu Y, Cuevas B, Johnson GL, Futscher BW, Blancafort P (2007) Re-activation of a dormant tumor suppressor gene maspin by designed transcription factors. Oncogene 26(19):2791–2798

    Article  CAS  PubMed  Google Scholar 

  105. Beltran AS, Russo A, Lara H, Fan C, Lizardi PM, Blancafort P (2011) Suppression of breast tumor growth and metastasis by an engineered transcription factor. PLoS One 6(9):e24595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Beltran AS, Blancafort P (2011) Reactivation of MASPIN in non-small cell lung carcinoma (NSCLC) cells by artificial transcription factors (ATFs). Epigenetics 6(2):224–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Huisman C, Wisman GBA, Kazemier HG, van Vugt MA, van der Zee AG, Schuuring E, Rots MG (2013) Functional validation of putative tumor suppressor gene C13ORF18 in cervical cancer by artificial transcription factors. Mol Oncol 7(3):669–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang L, Spratt SK, Liu Q, Johnstone B, Qi H, Raschke EE, Jamieson AC, Rebar EJ, Wolffe AP, Case CC (2000) Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J Biol Chem 275(43):33850–33860

    Article  CAS  PubMed  Google Scholar 

  109. Liu P-Q, Rebar EJ, Zhang L, Liu Q, Jamieson AC, Liang Y, Qi H, Li P-X, Chen B, Mendel MC (2001) Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J Biol Chem 276(14):11323–11334

    Article  CAS  PubMed  Google Scholar 

  110. Falke D, Fisher M, Ye D, Juliano R (2003) Design of artificial transcription factors to selectively regulate the pro-apoptotic bax gene. Nucleic Acids Res 31(3):e10–e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rebar EJ, Huang Y, Hickey R, Nath AK, Meoli D, Nath S, Chen B, Xu L, Liang Y, Jamieson AC (2002) Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med 8(12):1427

    Article  CAS  PubMed  Google Scholar 

  112. Zhang B, Xiang S, Zhong Q, Yin Y, Gu L, Deng D (2012) The p16-specific reactivation and inhibition of cell migration through demethylation of CpG islands by engineered transcription factors. Hum Gene Ther 23(10):1071–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Huisman C, van der Wijst MG, Falahi F, Overkamp J, Karsten G, Terpstra MM, Kok K, van der Zee AG, Schuuring E, Wisman GBA (2015) Prolonged re-expression of the hypermethylated gene EPB41L3 using artificial transcription factors and epigenetic drugs. Epigenetics 10(5):384–396

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhao H, Chen T (2013) Tet family of 5-methylcytosine dioxygenases in mammalian development. J Hum Genet 58(7):421–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen H, Kazemier HG, de Groote ML, Ruiters MH, Xu G-L, Rots MG (2014) Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res 42(3):1563–1574

    Article  CAS  PubMed  Google Scholar 

  116. Huisman C, Van Der Wijst MG, Schokker M, Blancafort P, Terpstra MM, Kok K, Van Der Zee AG, Schuuring E, Wisman GBA, Rots MG (2016) Re-expression of selected epigenetically silenced candidate tumor suppressor genes in cervical cancer by TET2-directed demethylation. Mol Ther 24(3):536–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hilton IB, D'ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33(5):510–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jurkowska RZ, Jeltsch A (2010) Silencing of gene expression by targeted DNA methylation: concepts and approaches. Methods Mol Biol 649:149–161

    Article  CAS  PubMed  Google Scholar 

  119. Xu G-L, Bestor TH (1997) Cytosine methylation targetted to pre-determined sequences. Nat Genet 17(4):376–378

    Article  CAS  PubMed  Google Scholar 

  120. Li F, Papworth M, Minczuk M, Rohde C, Zhang Y, Ragozin S, Jeltsch A (2006) Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res 35(1):100–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nunna S, Reinhardt R, Ragozin S, Jeltsch A (2014) Targeted methylation of the epithelial cell adhesion molecule (EpCAM) promoter to silence its expression in ovarian cancer cells. PLoS One 9(1):e87703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Siddique AN, Nunna S, Rajavelu A, Zhang Y, Jurkowska RZ, Reinhardt R, Rots MG, Ragozin S, Jurkowski TP, Jeltsch A (2013) Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a–Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol 425(3):479–491

    Article  CAS  PubMed  Google Scholar 

  123. Snowden AW, Gregory PD, Case CC, Pabo CO (2002) Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol 12(24):2159–2166

    Article  CAS  PubMed  Google Scholar 

  124. Falahi F, Huisman C, Kazemier HG, van der Vlies P, Kok K, Hospers GA, Rots MG (2013) Towards sustained silencing of HER2/neu in cancer by epigenetic editing. Mol Cancer Res 11(9):1029–1039

    Article  CAS  PubMed  Google Scholar 

  125. Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, Dénervaud N, Bucher P, Trono D (2010) KRAB–zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet 6(3):e1000869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Stolzenburg S, Rots MG, Beltran AS, Rivenbark AG, Yuan X, Qian H, Strahl BD, Blancafort P (2012) Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res 40(14):6725–6740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Van Der Gun B, Huisman C, Stolzenburg S, Kazemier H, Ruiters M, Blancafort P, Rots M (2013) Bidirectional modulation of endogenous EpCAM expression to unravel its function in ovarian cancer. Br J Cancer 108(4):881–886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Grimmer MR, Stolzenburg S, Ford E, Lister R, Blancafort P, Farnham PJ (2014) Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation. Nucleic Acids Res 42(16):10856–10868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rivenbark AG, Stolzenburg S, Beltran AS, Yuan X, Rots MG, Strahl BD, Blancafort P (2012) Epigenetic reprogramming of cancer cells via targeted DNA methylation. Epigenetics 7(4):350–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stolzenburg S, Beltran A, Swift-Scanlan T, Rivenbark A, Rashwan R, Blancafort P (2015) Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer. Oncogene 34(43):5427–5435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kungulovski G, Nunna S, Thomas M, Zanger UM, Reinhardt R, Jeltsch A (2015) Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenetics Chromatin 8(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Magnenat L, Blancafort P, Barbas CF (2004) In vivo selection of combinatorial libraries and designed affinity maturation of polydactyl zinc finger transcription factors for ICAM-1 provides new insights into gene regulation. J Mol Biol 341(3):635–649

    Article  CAS  PubMed  Google Scholar 

  133. Beltran AS, Sun X, Lizardi PM, Blancafort P (2008) Reprogramming epigenetic silencing: artificial transcription factors synergize with chromatin remodeling drugs to reactivate the tumor suppressor mammary serine protease inhibitor. Mol Cancer Ther 7(5):1080–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gregory DJ, Zhang Y, Kobzik L, Fedulov AV (2013) Specific transcriptional enhancement of inducible nitric oxide synthase by targeted promoter demethylation. Epigenetics 8(11):1205–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Eisenstein M (2012) Sangamo’s lead zinc-finger therapy flops in diabetic neuropathy. Nat Biotechnol 30(2):121–123

    Article  CAS  PubMed  Google Scholar 

  136. Maier DA, Brennan AL, Jiang S, Binder-Scholl GK, Lee G, Plesa G, Zheng Z, Cotte J, Carpenito C, Wood T (2013) Efficient clinical scale gene modification via zinc finger nuclease-targeted disruption of the HIV co-receptor CCR5. Hum Gene Ther 24(3):245–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Eisenstein M (2015) Disease: closing the door on HIV. Nature 528(7580):S8–S9

    Article  CAS  PubMed  Google Scholar 

  138. Olena A (2017) First in vivo human genome editing to be tested in new clinical trial. LabX Media Group. http://www.the-scientist.com/?articles.view/articleNo/49456/title/First-In-Vivo-Human-Genome-Editing-to-Be-Tested-in-New-Clinical-Trial/

    Google Scholar 

  139. Mussolino C, Cathomen T (2011) On target? Tracing zinc-finger-nuclease specificity. Nat Methods 8(9):725–726

    Article  CAS  PubMed  Google Scholar 

  140. Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae CC, Wang J, Friedman G (2011) An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 29(9):816–823

    Article  CAS  PubMed  Google Scholar 

  141. Zhang HS, Liu D, Huang Y, Schmidt S, Hickey R, Guschin D, Su H, Jovin IS, Kunis M, Hinkley S (2012) A designed zinc-finger transcriptional repressor of phospholamban improves function of the failing heart. Mol Ther 20(8):1508–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Garton M, Najafabadi HS, Schmitges FW, Radovani E, Hughes TR, Kim PM (2015) A structural approach reveals how neighbouring C2H2 zinc fingers influence DNA binding specificity. Nucleic Acids Res 43(19):9147–9157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu Q, Segal DJ, Ghiara JB, Barbas CF (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A 94(11):5525–5530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jantz D, Berg JM (2004) Reduction in DNA-binding affinity of Cys2His2 zinc finger proteins by linker phosphorylation. Proc Natl Acad Sci U S A 101(20):7589–7593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hurt JA, Thibodeau SA, Hirsh AS, Pabo CO, Joung JK (2003) Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc Natl Acad Sci U S A 100(21):12271–12276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Durai S, Bosley A, Abulencia AB, Chandrasegaran S, Ostermeier M (2006) A bacterial one-hybrid selection system for interrogating zinc finger-DNA interactions. Comb Chem High Throughput Screen 9(4):301–311

    Article  CAS  PubMed  Google Scholar 

  147. Chaikind B, Kilambi KP, Gray JJ, Ostermeier M (2012) Targeted DNA methylation using an artificially bisected M. HhaI fused to zinc fingers. PLoS One 7(9):e44852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Meister GE, Chandrasegaran S, Ostermeier M (2010) Heterodimeric DNA methyltransferases as a platform for creating designer zinc finger methyltransferases for targeted DNA methylation in cells. Nucleic Acids Res 38(5):1749–1759

    Article  CAS  PubMed  Google Scholar 

  149. Ślaska-Kiss K, Tímár E, Kiss A (2012) Complementation between inactive fragments of SssI DNA methyltransferase. BMC Mol Biol 13(1):17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Blancafort P, Magnenat L, Barbas CF (2003) Scanning the human genome with combinatorial transcription factor libraries. Nat Biotechnol 21(3):269–274

    Article  CAS  PubMed  Google Scholar 

  151. Blancafort P, Chen EI, Gonzalez B, Bergquist S, Zijlstra A, Guthy D, Brachat A, Brakenhoff RH, Quigley JP, Erdmann D (2005) Genetic reprogramming of tumor cells by zinc finger transcription factors. Proc Natl Acad Sci U S A 102(33):11716–11721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Klug A, Rhodes D (1987) ‘Zinc fingers’: a novel protein motif for nucleic acid recognition. Trends Biochem Scie 12:464–469

    Article  CAS  Google Scholar 

  153. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  CAS  PubMed  Google Scholar 

  154. Bonas U, Stall RE, Staskawicz B (1989) Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218(1):127–136

    Article  CAS  PubMed  Google Scholar 

  155. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55

    Article  CAS  PubMed  Google Scholar 

  156. Kay S, Bonas U (2009) How Xanthomonas type III effectors manipulate the host plant. Curr Opin Microbiol 12(1):37–43

    Article  CAS  PubMed  Google Scholar 

  157. Kay S, Hahn S, Marois E, Hause G, Bonas U (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318(5850):648–651

    Article  CAS  PubMed  Google Scholar 

  158. Römer P, Hahn S, Jordan T, Strauß T, Bonas U, Lahaye T (2007) Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318(5850):645–648

    Article  PubMed  CAS  Google Scholar 

  159. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512

    Article  CAS  PubMed  Google Scholar 

  160. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501–1501

    Article  CAS  PubMed  Google Scholar 

  161. Jankele R, Svoboda P (2014) TAL effectors: tools for DNA Targeting. Brief Funct Genomics 13(5):409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu J-K, Shi Y, Yan N (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335(6069):720–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mak AN-S, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335(6069):716–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Deng D, Yin P, Yan C, Pan X, Gong X, Qi S, Xie T, Mahfouz M, Zhu J-K, Yan N (2012) Recognition of methylated DNA by TAL effectors. Cell Res 22(10):1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cong L, Zhou R, Y-c K, Cunniff M, Zhang F (2012) Comprehensive interrogation of natural TALE DNA binding modules and transcriptional repressor domains. Nat Commun 24(3):968

    Article  CAS  Google Scholar 

  166. Moore R, Chandrahas A, Bleris L (2014) Transcription activator-like effectors: a toolkit for synthetic biology. ACS Synth Biol 3(10):708–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Meckler JF, Bhakta MS, Kim M-S, Ovadia R, Habrian CH, Zykovich A, Yu A, Lockwood SH, Morbitzer R, Elsäesser J (2013) Quantitative analysis of TALE–DNA interactions suggests polarity effects. Nucleic Acids Res 41(7):4118–4128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Rogers JM, Barrera LA, Reyon D, Sander JD, Kellis M, Joung JK, Bulyk ML (2015) Context influences on TALE–DNA binding revealed by quantitative profiling. Nat Commun 6:7440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Juillerat A, Dubois G, Valton J, Thomas S, Stella S, Maréchal A, Langevin S, Benomari N, Bertonati C, Silva GH (2014) Comprehensive analysis of the specificity of transcription activator-like effector nucleases. Nucleic Acids Res 42(8):5390–5402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, Sander JD, Joung JK, Liu DR (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 11(4):429–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Streubel J, Blücher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol 30(7):593–595

    Article  CAS  PubMed  Google Scholar 

  173. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30(5):460–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011) Assembly of designer TAL effectors by Golden Gate cloning. PLoS One 6(5):e19722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29(2):149–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39(14):6315–6325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7(1):171–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3(11):e3647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4(5):e5553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P, Church GM (2012) Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 40(15):e117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang Z, Li J, Huang H, Wang G, Jiang M, Yin S, Sun C, Zhang H, Zhuang F, Xi JJ (2012) An integrated chip for the high-throughput synthesis of transcription activator-like effectors. Angew Chem Int Ed 51(34):8505–8508

    Article  CAS  Google Scholar 

  183. Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, VanDyk JK, Bogdanove AJ (2012) TAL effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40(W1):W117–W122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Neff KL, Argue DP, Ma AC, Lee HB, Clark KJ, Ekker SC (2013) Mojo Hand, a TALEN design tool for genome editing applications. BMC Bioinformatics 14(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Li L, Piatek MJ, Atef A, Piatek A, Wibowo A, Fang X, Sabir JSM, Zhu J-K, Mahfouz MM (2012) Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol 78(4–5):407–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ma AC, McNulty MS, Poshusta TL, Campbell JM, Martínez-Gálvez G, Argue DP, Lee HB, Urban MD, Bullard CE, Blackburn PR (2016) FusX: a rapid one-step transcription activator-like effector assembly system for genome science. Hum Gene Ther 27(6):451–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Schmid-Burgk JL, Schmidt T, Kaiser V, Höning K, Hornung V (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol 31(1):76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ding Q, Lee Y-K, Schaefer EA, Peters DT, Veres A, Kim K, Kuperwasser N, Motola DL, Meissner TB, Hendriks WT (2013) A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12(2):238–251

    Article  CAS  PubMed  Google Scholar 

  189. Ma AC, Lee HB, Clark KJ, Ekker SC (2013) High efficiency in vivo genome engineering with a simplified 15-RVD GoldyTALEN design. PLoS One 8(5):e65259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sakuma T, Ochiai H, Kaneko T, Mashimo T, Tokumasu D, Sakane Y, K-i S, Miyamoto T, Sakamoto N, Matsuura S (2013) Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep 3:3379

    Article  PubMed  PubMed Central  Google Scholar 

  191. Maeder ML, Linder SJ, Reyon D, Angstman JF, Fu Y, Sander JD, Joung JK (2013) Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods 10(3):243–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Perez-Pinera P, Ousterout DG, Brunger JM, Farin AM, Glass KA, Guilak F, Crawford GE, Hartemink AJ, Gersbach CA (2013) Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods 10(3):239–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Garcia-Bloj B, Moses C, Sgro A, Plani-Lam J, Arooj M, Duffy C, Thiruvengadam S, Sorolla A, Rashwan R, Mancera RL, Leisewitz A, Swift-Scanlan T, Corvalan AH, Blancafort P (2016) Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget 7(37):60535–60554

    Article  PubMed  PubMed Central  Google Scholar 

  194. Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, Bernstein BE (2013) Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31(12):1133–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bultmann S, Morbitzer R, Schmidt CS, Thanisch K, Spada F, Elsaesser J, Lahaye T, Leonhardt H (2012) Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res 40(12):5368–5377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chen S, Oikonomou G, Chiu CN, Niles BJ, Liu J, Lee DA, Antoshechkin I, Prober DA (2013) A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly. Nucleic Acids Res 41(4):2769–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Valton J, Dupuy A, Daboussi F, Thomas S, Maréchal A, Macmaster R, Melliand K, Juillerat A, Duchateau P (2012) Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287(46):38427–38432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho QH, Sander JD, Reyon D, Bernstein BE (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31(12):1137–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500(7463):472–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lo C-L, Choudhury SR, Irudayaraj J, Zhou FC (2017) Epigenetic editing of Ascl1 gene in neural stem cells by optogenetics. Sci Rep 7:42047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ayer DE, Laherty CD, Lawrence QA, Armstrong AP, Eisenman RN (1996) Mad proteins contain a dominant transcription repression domain. Mol Cell Biol 16(10):5772–5781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953

    Article  CAS  PubMed  Google Scholar 

  203. Metzger E, Wissmann M, Yin N, Müller JM, Schneider R, Peters AH, Günther T, Buettner R, Schüle R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437(7057):436–439

    Article  CAS  PubMed  Google Scholar 

  204. Polstein LR, Perez-Pinera P, Kocak DD, Vockley CM, Bledsoe P, Song L, Safi A, Crawford GE, Reddy TE, Gersbach CA (2015) Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE-and CRISPR/Cas9-based transcriptional activators. Genome Res 25(8):1158–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Tesson L, Usal C, Ménoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29(8):695–696

    Article  CAS  PubMed  Google Scholar 

  207. Grau J, Wolf A, Reschke M, Bonas U, Posch S, Boch J (2013) Computational predictions provide insights into the biology of TAL effector target sites. PLoS Comput Biol 9(3):e1002962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Rinaldi FC, Doyle LA, Stoddard BL, Bogdanove AJ (2017) The effect of increasing numbers of repeats on TAL effector DNA binding specificity. Nucleic Acids Res 45(11):6960–6970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Miller JC, Zhang L, Xia DF, Campo JJ, Ankoudinova IV, Guschin DY, Babiarz JE, Meng X, Hinkley SJ, Lam SC (2015) Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nat Methods 12(5):465–471

    Article  CAS  PubMed  Google Scholar 

  210. Ma H, Reyes-Gutierrez P, Pederson T (2013) Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. Proc Natl Acad Sci U S A 110(52):21048–21053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, Mussolino C, Recchia A, Cathomen T, Gonçalves MA (2013) Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 41(5):e63–e63

    Article  CAS  PubMed  Google Scholar 

  212. Bernstein DL, Le Lay JE, Ruano EG, Kaestner KH (2015) TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts. J Clin Invest 125(5):1998–2006

    Article  PubMed  PubMed Central  Google Scholar 

  213. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Mojica FJ, Díez-Villaseñor C, Soria E, Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36(1):244–246

    Article  CAS  PubMed  Google Scholar 

  215. Jansen R, Embden J, Gaastra W, Schouls L (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575

    Article  CAS  PubMed  Google Scholar 

  216. Mojica FJ, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60(2):174–182

    Article  CAS  PubMed  Google Scholar 

  217. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712. https://doi.org/10.1126/science.1138140

    Article  CAS  PubMed  Google Scholar 

  218. Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA. Science 322(5909):1843–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(8):2551–2561

    Article  CAS  PubMed  Google Scholar 

  220. Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151(3):653–663

    Article  CAS  PubMed  Google Scholar 

  221. Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11(3):181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Garneau JE, Dupuis M-E, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71

    Article  CAS  PubMed  Google Scholar 

  223. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13(11):722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  Google Scholar 

  225. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109(39):E2579–E2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Nishimasu H, Ran F, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21):9275–9282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. https://doi.org/10.1038/nbt.2647. http://www.nature.com/nbt/journal/v31/n9/abs/nbt.2647.html#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Bae S, Park J, Kim J-S (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30(10):1473–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44(W1):W272–W276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Naito Y, Hino K, Bono H, Ui-Tei K (2014) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. O’Brien A, Bailey TL (2014) GT-Scan: identifying unique genomic targets. Bioinformatics 30(18):2673–2675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Pliatsika V, Rigoutsos I (2015) “Off-Spotter”: very fast and exhaustive enumeration of genomic lookalikes for designing CRISPR/Cas guide RNAs. Biol Direct 10(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  238. Zhu LJ, Holmes BR, Aronin N, Brodsky MH (2014) CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS One 9(9):e108424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Stemmer M, Thumberger T, del Sol Keyer M, Wittbrodt J, Mateo JL (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10(4):e0124633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Oliveros JC, Franch M, Tabas-Madrid D, San-León D, Montoliu L, Cubas P, Pazos F (2016) Breaking-Cas—interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes. Nucleic Acids Res 44(W1):W267–W271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Benchling (2017) Quick and easy CRISPR designs. benchling.com/crispr

    Google Scholar 

  242. Desktop Genetics (2017) CRISPR/Cas9 guide RNA design software. www.deskgen.com

    Google Scholar 

  243. Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han Y-C, Ogrodowski P, Crippa A, Rekhtman N, de Stanchina E (2014) In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516(7531):423–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA (2014) Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res 42(19):e147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T (2014) Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep 4:5400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Albers J, Danzer C, Rechsteiner M, Lehmann H, Brandt LP, Hejhal T, Catalano A, Busenhart P, Gonçalves AF, Brandt S (2015) A versatile modular vector system for rapid combinatorial mammalian genetics. J Clin Invest 125(4):1603–1619

    Article  PubMed  PubMed Central  Google Scholar 

  247. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32(6):569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Kim S, Kim D, Cho SW, Kim J, Kim J-S (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012–1019. https://doi.org/10.1101/gr.171322.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S, Ravinder N, Chesnut JD (2015) Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208:44–53. https://doi.org/10.1016/j.jbiotec.2015.04.024

    Article  CAS  PubMed  Google Scholar 

  250. Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, Haliburton GE, Ye CJ, Ja B, Ja D, Marson A (2015) Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci U S A 112:10437–10442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11(8):783–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588

    Article  CAS  PubMed  Google Scholar 

  253. Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA, Chen Y, Fields AP, Park CY, Corn JE, Kampmann M (2016) Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. elife 5:e19760

    Article  PubMed  PubMed Central  Google Scholar 

  254. Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33(9):985–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Kim D, Kim J, Hur JK, Been KW, Yoon S-h, Kim J-S (2016) Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34:863–838

    Article  CAS  PubMed  Google Scholar 

  256. Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10(11):1116–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK (2016) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34(8):869–874. https://doi.org/10.1038/nbt.3620. http://www.nature.com/nbt/journal/vaop/ncurrent/abs/nbt.3620.html#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10(10):977–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10(10):973–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41(15):7429–7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB, Jaenisch R (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23(10):1163–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Gao X, Tsang JC, Gaba F, Wu D, Lu L, Liu P (2014) Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Res 42(20):e155–e155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T (2015) Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Rep 5(3):448–459

    Article  CAS  Google Scholar 

  267. Chakraborty S, Ji H, Kabadi AM, Gersbach CA, Christoforou N, Leong KW (2014) A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Rep 3(6):940–947

    Article  CAS  Google Scholar 

  268. Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Iyer EP, Lin S, Kiani S, Guzman CD, Wiegand DJ (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Med 12(4):326–328

    CAS  Google Scholar 

  269. Lin S, Ewen-Campen B, Ni X, Housden BE, Perrimon N (2015) In vivo transcriptional activation using CRISPR-Cas9 in Drosophila. Genetics 201(2):433–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159(3):635–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, Sakai A, Nakashima H, Hata K, Nakashima K (2016) Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat Biotechnol 34(10):1060–1065

    Article  CAS  PubMed  Google Scholar 

  272. Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J (2016) CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7(29):46545

    Article  PubMed  PubMed Central  Google Scholar 

  273. Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R (2016) Editing DNA methylation in the mammalian genome. Cell 167(1):233–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Cano-Rodriguez D, Gjaltema RAF, Jilderda LJ, Jellema P, Dokter-Fokkens J, Ruiters MHJ, Rots MG (2016) Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat Commun 7:12284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Thakore PI, D'Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, Reddy TE, Crawford GE, Gersbach CA (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 12(12):1143–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M, Maehr R (2015) Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods 12(5):401–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Song J, Cano-Rodriquez D, Winkle M, Gjaltema RA, Goubert D, Jurkowski TP, Heijink IH, Rots MG, Hylkema MN (2017) Targeted epigenetic editing of SPDEF reduces mucus production in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 312(3):L334–L347

    Article  PubMed  Google Scholar 

  278. Vojta A, Dobrinić P, Tadić V, Bočkor L, Korać P, Julg B, Klasić M, Zoldoš V (2016) Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44(12):5615–5628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F, Reinhardt R, Reik W, Jeltsch A, Jurkowski TP (2017) Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucleic Acids Res 45(4):1703–1713

    Article  CAS  PubMed  Google Scholar 

  280. Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D, Naldini L, Lombardo A (2016) Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167(1):219–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim J-S (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24(1):132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Kuscu C, Arslan S, Singh R, Thorpe J, Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32(7):677–683

    Article  CAS  PubMed  Google Scholar 

  283. Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32(7):670–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34(2):184–191. https://doi.org/10.1038/nbt.3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32(12):1262–1267. https://doi.org/10.1038/nbt.3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31(9):839–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495. https://doi.org/10.1038/nature16526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88. https://doi.org/10.1126/science.aad5227

    Article  CAS  PubMed  Google Scholar 

  289. Zhang X, Wang J, Cheng Q, Zheng X, Zhao G, Wang J (2017) Multiplex gene regulation by CRISPR-ddCpf1. Cell Disc 3:17018

    Article  CAS  Google Scholar 

  290. Kim SK, Kim H, Ahn W-C, Park K-H, Woo E-J, Lee D-H, Lee S-G (2017) Efficient transcriptional gene repression by type VA CRISPR-Cpf1 from Eubacterium eligens. ACS Synth Biol 6(7):1273–1282

    Article  CAS  PubMed  Google Scholar 

  291. Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532(7600):517–521

    Article  CAS  PubMed  Google Scholar 

  292. Juárez-Moreno K, Erices R, Beltran AS, Stolzenburg S, Cuello-Fredes M, Owen GI, Qian H, Blancafort P (2013) Breaking through an epigenetic wall: re-activation of Oct4 by KRAB-containing designer zinc finger transcription factors. Epigenetics 8(2):164–176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  293. Horlbeck MA, Witkowsky LB, Guglielmi B, Replogle JM, Gilbert LA, Villalta JE, Torigoe SE, Tjian R, Weissman JS (2016) Nucleosomes impede Cas9 access to DNA in vivo and in vitro. elife 5:e12677

    Article  PubMed  PubMed Central  Google Scholar 

  294. Vora S, Tuttle M, Cheng J, Church G (2016) Next stop for the CRISPR revolution: RNA-guided epigenetic regulators. FEBS J 283(17):3181–3193

    Article  CAS  PubMed  Google Scholar 

  295. Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160(1):339–350

    Article  CAS  PubMed  Google Scholar 

  296. Dahlman JE, Abudayyeh OO, Joung J, Gootenberg JS, Zhang F, Konermann S (2015) Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol 33(11):1159–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Kiani S, Chavez A, Tuttle M, Hall RN, Chari R, Ter-Ovanesyan D, Qian J, Pruitt BW, Beal J, Vora S (2015) Cas9 gRNA engineering for genome editing, activation and repression. Nat Methods 12(11):1051–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Jamieson AC, Wang H, Kim S-H (1996) A zinc finger directory for high-affinity DNA recognition. Proc Natl Acad Sci U S A 93(23):12834–12839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ, Joung JK (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481–485. https://doi.org/10.1038/nature14592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Altucci L, Rots MG (2016) Epigenetic drugs: from chemistry via biology to medicine and back. Clin Epigenetics 8(1):56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  301. Limsirichai P, Gaj T, Schaffer DV (2016) CRISPR-mediated activation of latent HIV-1 expression. Mol Ther 24(3):499–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Zhang Y, Yin C, Zhang T, Li F, Yang W, Kaminski R, Fagan PR, Putatunda R, Young W-B, Khalili K (2015) CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci Rep 5:16277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Kretzmann JA, Ho D, Evans CW, Plani-Lam JH, Garcia-Bloj B, Mohamed AE, O'Mara ML, Ford E, Tan DE, Lister R (2017) Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chem Sci 8(4):2923–2930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Lara H, Wang Y, Beltran AS, Juárez-Moreno K, Yuan X, Kato S, Leisewitz AV, Fredes MC, Licea AF, Connolly DC (2012) Targeting serous epithelial ovarian cancer with designer zinc finger transcription factors. J Biol Chem 287(35):29873–29886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Wang Y, Su H-h, Yang Y, Hu Y, Zhang L, Blancafort P, Huang L (2013) Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol Ther 21(2):358–367

    Article  CAS  PubMed  Google Scholar 

  306. Yin H, Song C-Q, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A, Gupta A, Bolukbasi MF, Walsh S, Bogorad RL, Gao G, Weng Z, Dong Y, Koteliansky V, Wolfe SA, Langer R, Xue W, Anderson DG (2016) Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 34(3):328–333. https://doi.org/10.1038/nbt.3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

C.M. is a recipient of the Hackett Postgraduate Research Scholarship from the University of Western Australia. M.A. is a recipient of the Curtin Strategic International Research Scholarship. This work was supported by the Harry Perkins Institute of Medical Research, the University of Western Australia, and the following grants awarded to P.B.: the Australian Research Council DP150104433, FT130101688, and FT130101767; the Cancer Council Western Australia Research Fellowship; the National Health and Medical Research Council grant APP1069308; the National Institutes of Health grants R01CA170370 and R01DA036906; and the National Breast Cancer Foundation NC-14-024. Charlene Babra Waryah and Colette Moses contributed equally to this work. The authors apologize to those whose important contributions were omitted due to space constraints.

Contributions: C.B.W., C.M., and P.B. wrote the review; M.A. conducted structural modeling for Figs. 1 and 2.

Conflict of interest: The authors declare no conflicts of interest. The authorship of this article complies with the Australian Code of Responsible Conduct of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Blancafort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Waryah, C.B., Moses, C., Arooj, M., Blancafort, P. (2018). Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing. In: Jeltsch, A., Rots, M. (eds) Epigenome Editing. Methods in Molecular Biology, vol 1767. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7774-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7774-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7773-4

  • Online ISBN: 978-1-4939-7774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics