Skip to main content
Log in

Isolation and characterization of heat-responsive gene TaGASR1 from wheat (Triticum aestivum L.)

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

GA-stimulated transcript (GAST) family genes have been identified in numerous plant species. In this paper, we isolated and characterized a heat-responsive gene, TaGASR1, from heat tolerant variety TAM107. The complete ORF of TaGASR1 was cloned, which encoded a 98-kDa protein, and the sequence shared 51.52% similarity to OsGASR1. Analysis of the TaGASR1 promoter region showed that it contained a heat shock element (HSE) and several cis-elements involved in abiotic stress response and hormone signal transduction. Expression patterns of TaGASR1 revealed that it was strongly induced by stress factors, such as high temperature, drought, high salinity and oxidation, as well as the phytohormones, including MeJA, ACC and ABA, which suggested the TaGASR1 gene might participate in these stress and hormone signal transduction pathways. Transient expression of TaGASR1-GFP fusion proteins in onion epidermal cells indicated that TaGASR1 protein was localized to the cell membrane or cytosol. Further analysis showed that ectopic expression of TaGASR1 in Arabidopsis enhanced thermotolerance and reduced the accumulation of reactive oxygen species (ROS) after heat stress. Moreover, we also found that TaGASR1-overexpressing wheat improved tolerance to heat stress and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez JA, Nicolas G, Lopez-Climent M, Gomez-Cadenas A, Nicolas C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis Seeds. Plant Physiol 150:1335–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arce DP, Godoy AV, Tsuda K, Yamazaki K, Valle EM, Iglesias MJ, Di Mauro MF, Casalongue CA (2010) The analysis of an Arabidopsis triple knock-down mutant reveals functions for MBF1 genes under oxidative stress conditions. J Plant Physiol 167:194–200

    Article  CAS  PubMed  Google Scholar 

  • Aubert D, Chevillard M, Dorne AM, Arlaud G, Herzog M (1998) Expression patterns of GASA genes in Arabidopsis thaliana: the GASA4 gene is up-regulated by gibberellins in meristematic regions. Plant Mol Biol 36:871–883

    Article  CAS  PubMed  Google Scholar 

  • Ben-Nissan G, Lee JY, Borohov A, Weiss D (2004) GIP, a Petunia hybrida GA-induced cysteine-rich protein: a possible role in shoot elongation and transition to flowering. Plant J 37: 229–238

    Article  CAS  PubMed  Google Scholar 

  • Berrocal-Lobo M, Segura A, Moreno M, Lopez G, Garcia-Olmedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco-Portales R, Bellido ML, Garcia-Caparros N, Medina-Puche L, Caballero-Repullo JL, Gonzalez-Reyes JA, Munoz-Blanco J, Moyano E (2012) The strawberry FaGAST2 gene determines receptacle cell size during fruit development and ripening. FEBS J 279:82–82

    Google Scholar 

  • Chauhan H, Khurana N, Nijhavan A, Khurana JP and Khurana P (2012) The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ 35:1912–1931

    Article  CAS  PubMed  Google Scholar 

  • Dhanda S, Munjal R (2009). Cell membrane stability: Combining ability and gene effects under heat stress conditions. Cereal Res Commun 37:409–417

    Article  CAS  Google Scholar 

  • Furukawa T, Sakaguchi N, Shimada H (2006) Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles. Genes Genet Syst 81:171–180

    Article  CAS  PubMed  Google Scholar 

  • He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M, Ma YZ, Xu ZS (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Herzog M, Dorne AM, Grellet F (1995) GASA, a gibberellin-regulated gene family from arabidopsis-thaliana related to the tomato GAST1 gene. Plant Mol Biol 27:743–752

    Article  CAS  PubMed  Google Scholar 

  • Ko CB, Woo YM, Lee DJ, Lee MC, Kim CS (2007) Enhanced tolerance to heat stress in transgenic plants expressing the GASA4 gene. Plant Physiol Biochem 45:722–728

    Article  CAS  PubMed  Google Scholar 

  • Mao ZC, Zheng JY, Wang YS, Chen GH, Yang YH, Feng DX, Xie BY (2011) The new CaSn gene belonging to the snakin family induces resistance against root-knot nematode infection in pepper. Phytoparasitica 39:151–164

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Moyano-Canete E, Bellido ML, Garcia-Caparros N, Medina-Puche L, Amil-Ruiz F, Gonzalez-Reyes JA, Caballero JL, Munoz-Blanco J, Blanco-Portales R (2013) FaGAST2, a strawberry ripening-related gene, acts together with FaGAST1 to determine cell size of the fruit receptacle. Plant Cell Physiol 54:218–236

    Article  CAS  PubMed  Google Scholar 

  • Nahirnak V, Almasia NI, Fernandez PV, Hopp HE, Estevez JM, Carrari F, Vazquez-Rovere C (2012) Potato Snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition. Plant Physiol 158:252–263

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Xu W, Zhang J, Guo R, Zhao M, Hu L, Wang H, Dong H, Li Y (2016) Physiological characteristics and metabolomics of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress. Protoplasma.

    Google Scholar 

  • Qin D, Wu H, Peng H, Yao Y, Ni Z, Li Z, Zhou C, Sun Q (2008) Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics 9:432

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards RA, Watt M, Rebetzke GJ (2006) Physiological traits and cereal germplasm for sustainable agricultural systems. Euphytica 154:409–425

    Article  Google Scholar 

  • Roxrud I, Lid SE, Fletcher JC, Schmidt ED, Opsahl-Sorteberg HG (2007) GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development. Plant Cell Physiol 48:471–483

    Article  CAS  PubMed  Google Scholar 

  • Rubinovich L, Ruthstein S, Weiss D (2014) The Arabidopsis Cysteine-Rich GASA5 Is a Redox-Active Metalloprotein that Suppresses Gibberellin Responses. Mol Plant 7:244–247

    Article  CAS  PubMed  Google Scholar 

  • Samach A, Wigge PA (2005) Ambient temperature perception in plants. Curr Opin Plant Biol 8:483–486

    Article  PubMed  Google Scholar 

  • Segura A, Moreno M, Madueno F, Molina A, Garcia-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe Interact 12:16–23

    Article  CAS  PubMed  Google Scholar 

  • Shi LF, Olszewski NE (1998) Gibberellin and abscisic acid regulate GAST1 expression at the level of transcription. Plant Mol Biol 38:1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Shi LF, Gast RT, Gopalraj M, Olszewski NE (1992) Characterization of a shoot-specific, GA3-regulated and ABA-regulated gene from tomato. Plant J 2:153–159

    CAS  PubMed  Google Scholar 

  • Silverstein KAT, Moskal WA, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA (2007). Small cysteine-rich peptides resembling antimicrobial peptides have been underpredicted in plants. Plant J 51:262–280

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Wang H, Yu H, Zhong C, Zhang X, Peng J, Wang X (2013) GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. J Exp Bot 64:1637–1647

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang Z, Xu Y, Joo SH, Kim SK, Xue Z, Xu Z, Wang Z, Chong K (2009) OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J 57:498–510

    Article  CAS  PubMed  Google Scholar 

  • Whitlow TH, Bassuk NL, Ranney TG, Reichert DL (1992) An improved method for using electrolyte leakage to assess membrane competence in plant-tissues. Plant Physiol 98:198–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wigoda N, Ben-Nissan G, Granot D, Schwartz A, Weiss D (2006) The gibberellin-induced, cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity. Plant J 48:796–805

    Article  CAS  PubMed  Google Scholar 

  • Xue GP, Drenth J, McIntyre CL (2015) TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J Exp Bot 66:1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Yeh DM, Lin HF (2003) Thermostability of cell membranes as a measure of heat tolerance and relationship to flowering delay in chrysanthemum. J Am Soc Hortic Sci 128:656–660

    Google Scholar 

  • Zhang D, Wang B, Zhao J, Zhao X, Zhang L, Liu D, Dong L, Wang D, Mao L, Li A (2015) Divergence in homoeolog expression of the grain length-associated gene GASR7 during wheat allohexaploidization. The Crop Journal 3:1–9

    Article  Google Scholar 

  • Zhang S, Wang X (2011) Overexpression of GASA5 increases the sensitivity of Arabidopsis to heat stress. J Plant Physiol 168:2093–2101

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Yang C, Peng J, Sun S, Wang X (2009) GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana. Plant Mol Biol 69:745–759

    Article  CAS  PubMed  Google Scholar 

  • Zhang SC, Wang XJ (2008) Expression pattern of GASA, downstream genes of DELLA, in Arabidopsis. Chin Sci Bull 53:3839–3846

    CAS  Google Scholar 

  • Zhao TJ, Zhao SY, Chen HM, Zhao QZ, Hu ZM, Hou BK, Xia GM (2006) Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep 25:1199–1204

    Article  PubMed  Google Scholar 

  • Zimmermann R, Sakai H, Hochholdinger F (2010) The gibberellic acid stimulated-like gene family in maize and its role in lateral root development. Plant Physiol 152:356–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiru Peng.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Geng, X., Zhang, H. et al. Isolation and characterization of heat-responsive gene TaGASR1 from wheat (Triticum aestivum L.). J. Plant Biol. 60, 57–65 (2017). https://doi.org/10.1007/s12374-016-0484-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0484-7

Keywords

Navigation