Skip to main content
Log in

Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Fe participates in several important reactions in plant metabolism. However, Fe homeostasis in plants is not completely understood, and molecular studies on Fe-excess stress are scarce. Rice (Oryza sativa L. ssp. indica) is largely cultivated in submerged conditions, where the extremely reductive environment can lead to severe Fe overload. In this work, we used representational difference analysis (RDA) to isolate sequences up-regulated in rice shoots after exposure to Fe-excess. We isolated 24 sequences which have putative functions in distinct cellular processes, such as transcription regulation (OsWRKY80), stress response (OsGAP1, DEAD-BOX RNA helicase), proteolysis (oryzain-α, rhomboid protein), photosynthesis (chlorophyll a/b binding protein), sugar metabolism (β glucosidase) and electron transport (NADH ubiquinone oxireductase). We show that the putative WRKY transcription factor OsWRKY80 is up-regulated in rice leaves, stems and roots after Fe-excess treatment. This up-regulation is also observed after dark-induced senescence and drought stress, indicating that OsWRKY80 could be a general stress-responsive gene. To our knowledge, this is the first report of an Fe-excess-induced transcription factor in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

BAP:

6-Benzylaminopurine

CAB:

Chlorophyll a/b binding protein

DP:

Differential product

LRR:

Leucine-rich repeat receptor

MES:

2,4-Morpholino-ethane sulfonic acid

PSII:

Photosystem II

RDA:

Representational difference analysis

ROS:

Reactive oxygen species

RuBisCO:

Ribulose 1,5-bisphosphate carboxylase/oxygenase

SAG:

Senescence-associated gene

SGR:

Staygreen

TF:

Transcription factor

References

  1. Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820

    CAS  PubMed  Google Scholar 

  2. Spiller SC, Terry N (1980) Limiting factors of photosynthesis II: iron stress diminishes photochemical capacity by reducing the number of photosynthetic units. Plant Physiol 65:121–125

    Article  CAS  PubMed  Google Scholar 

  3. Sperotto RA, Ricachenevsky FK, Fett JP (2007) Iron deficiency in rice shoots: identification of novel induced genes using RDA and possible relation to leaf senescence. Plant Cell Rep 26:1399–1411

    Article  CAS  PubMed  Google Scholar 

  4. Sperotto RA, Boff T, Duarte GL, Fett JP (2008) Increased senescence-associated gene expression and lipid peroxidation induced by iron deficiency in rice roots. Plant Cell Rep 27:183–195

    Article  CAS  PubMed  Google Scholar 

  5. Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nature Biotechnol 19:466–469

    Article  CAS  Google Scholar 

  7. Sahrawat KL (2004) Iron toxicity in wetland rice and the role of other nutrients. J Plant Nutr 27:1471–1504

    Article  CAS  Google Scholar 

  8. Fang WC, Wang JW, Lin CC, Kao CH (2001) Iron induction of lipid peroxidation and effects on antioxidative enzymes activities in rice leaves. Plant Growth Reg 35:75–80

    Article  CAS  Google Scholar 

  9. Ponnamperuma FN, Bradfield R, Peech M (1955) Physiological disease of rice attributable to iron toxicity. Nature 175:265

    Article  CAS  Google Scholar 

  10. Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron dependent oxygen free radical generation in plants subjected in environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147

    Article  CAS  Google Scholar 

  11. Cadenas E (1989) Biochemistry of oxygen toxicity. Ann Rev Biochem 58:79–110

    Article  CAS  PubMed  Google Scholar 

  12. Halliwell B, Gutteridge JMC (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. FEBS Lett 307:108–112

    Article  CAS  PubMed  Google Scholar 

  13. Kampfenkel K, Van Montagu M, Inzé D (1995) Effects of iron-excess on Nicotiana plumbaginifolia. Implications to oxidative stress. Plant Physiol 107:725–735

    CAS  PubMed  Google Scholar 

  14. Yamauchi M, Peng XX (1995) Iron toxicity and stress-induced ethylene production in rice leaves. Plant Soil 173:21–28

    Article  CAS  Google Scholar 

  15. Suh H, Kim CS, Lee J, Jung J (2002) Photodynamic effect of iron-excess on photosystem II function in pea plants. Photochem Photobiol 75:513–518

    Article  CAS  PubMed  Google Scholar 

  16. Mengel K, Kirkby EA (1982) Iron. In: Mengel K, Kirkby EA (eds) Principles of plant nutrition, 3rd edn. Der Bund Press, Bern, Germany, pp 473–489

    Google Scholar 

  17. Ravet K, Touraine B, Boucherez J, Briat JF, Gaymard F, Cellier F (2009) Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J 57:400–412

    Article  CAS  PubMed  Google Scholar 

  18. Stein RJ, Ricachenevsky FK, Fett JP (2009) Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2). Plant Sci 177:563–569

    Article  CAS  Google Scholar 

  19. Pich A, Manteuffel R, Hillmer S, Scholz G, Schmidt W (2001) Fe homeostasis in plant cells: does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration? Planta 213:967–976

    Article  CAS  PubMed  Google Scholar 

  20. Stein RJ, Duarte GL, Spohr MG, Lopes SIG, Fett JP (2009) Distinct physiological responses of two rice cultivars subjected to iron toxicity under field conditions. Ann Appl Biol 154:269–277

    Article  CAS  Google Scholar 

  21. Duan MR, Nan J, Liang YH, Mao P, Lu L, Li L, Wei C, Lai L, Li Y, Su XD (2007) DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucl Acids Res 35:1145–1154

    Article  CAS  PubMed  Google Scholar 

  22. Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  Google Scholar 

  23. Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189

    Article  CAS  PubMed  Google Scholar 

  24. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  25. Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    CAS  PubMed  Google Scholar 

  26. Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68:81–92

    Article  CAS  PubMed  Google Scholar 

  27. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  28. Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  CAS  PubMed  Google Scholar 

  29. Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375

    Article  CAS  PubMed  Google Scholar 

  30. Gregersen PL, Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotech J 5:192–206

    Article  CAS  Google Scholar 

  31. Marè C, Mazzucotelli E, Crosatti C, Francia E, Stanca AM, Cattivelli L (2004) Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol 55:399–416

    Article  PubMed  Google Scholar 

  32. Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integrat Genom 7:111–134

    Article  CAS  Google Scholar 

  33. Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L, Zhang Q, Fan L, Deng XW (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63:591–608

    Article  CAS  PubMed  Google Scholar 

  34. Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    Article  CAS  PubMed  Google Scholar 

  35. Nava G, Bohnen H (2002) Oxidação de ferro em raízes de dois cultivares de arroz em solução de solo inundado. R Bras Cienc Solo 26:325–332

    CAS  Google Scholar 

  36. Silveira VC, Oliveira AP, Sperotto RA, Espindola LS, Amaral L, Dias JF, Cunha JB, Fett JP (2007) Influence of iron on mineral status of two rice (Oryza sativa L.) cultivars. Braz J Plant Physiol 19:127–139

    Article  Google Scholar 

  37. Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, Takahashi M, Mori S, Nishizawa NK (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57:2867–2878

    Article  CAS  PubMed  Google Scholar 

  38. Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19:1362–1375

    Article  CAS  PubMed  Google Scholar 

  39. Pastorian K, Hawell L III, Byus CV (2000) Optimization of cDNA representational difference analysis for the identification of differentially expressed mRNAs. Anal Biochem 283:89–98

    Article  CAS  PubMed  Google Scholar 

  40. Dutra V, Nakazato L, Broetto L, Schrank IS, Vainstein MH, Schrank A (2004) Application of representational difference analysis to identify sequence tags expressed by Metarhizium anisopliae during the infection process of the tick Boophilus microplus cuticle. Res Microbiol 155:245–251

    Article  CAS  PubMed  Google Scholar 

  41. Yazaki N, Kojima K, Suzuki K, Kishimoto N, Kikuchi S (2004) The Rice PIPELINE: a unification tool for plant functional genomics. Nucl Acids Res 32:383–387

    Article  Google Scholar 

  42. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    Article  CAS  PubMed  Google Scholar 

  43. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  44. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  45. Silveira VC, Fadanelli C, Sperotto RA, Stein RJ, Basso LA, Santos DS, Vaz I Jr, Dias JF, Fett JF (2009) Role of ferritin in the rice tolerance to iron overload. Sci Agric 66:549–555

    Google Scholar 

  46. Briat JF, Cellier F, Gaymard F (2006) Ferritins and iron accumulation in plant tissues. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhyzospheric microorganisms. Springer, Verlag, pp 341–357

    Chapter  Google Scholar 

  47. Fu Y, Zhao W, Peng Y (2007) Induced expression of oryzain alpha gene encoding a cysteine proteinase under stress conditions. J Plant Res 120:465–469

    Article  CAS  PubMed  Google Scholar 

  48. Cheung MY, Zeng NY, Tong SW, Li WY, Xue Y, Zhao KJ, Wang C, Zhang Q, Fu Y, Sun Z, Sun SS, Lam HM (2008) Constitutive expression of a rice GTPase-activating protein induces defense responses. New Phytol 179:530–545

    Article  CAS  PubMed  Google Scholar 

  49. Guo ZJ, Kan YC, Chen XJ, Li DB, Wang DW (2004) Characterization of a rice WRKY gene whose expression is induced upon pathogen attack and mechanical wounding. Acta Botanica Sinica 46:955–964

    CAS  Google Scholar 

  50. Watanabe H, Abe K, Emori Y, Hosoyama H, Arai S (1991) Molecular cloning and gibberellin-induced expression of multiple cysteine proteinases of rice seeds (oryzains). J Biol Chem 266:16897–16902

    CAS  PubMed  Google Scholar 

  51. Azeez A, Sane AP, Bhatnagar D, Nath P (2007) Enhanced expression of serine proteases during floral senescence in Gladiolus. Phytochem 68:1352–1357

    Article  CAS  Google Scholar 

  52. Li Y, Zhou L, Li Y, Chen D, Tan X, Lei L, Zhou J (2008) A nodule-specific plant cysteine proteinase, AsNODF32, is involved in nodule senescence and nitrogen fixation activity of the green manure legume Astragalus sinicus. New Phytol 180:185–192

    Article  CAS  PubMed  Google Scholar 

  53. Su W, Ma H, Liu C, Wu J, Yang J (2006) Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4. Mol Biol Rep 33:73–78

    Article  Google Scholar 

  54. Xiong Y, Contento AL, Bassham DC (2005) AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J 42:535–546

    Article  CAS  PubMed  Google Scholar 

  55. Gepstein S (2004) Leaf senescence—not just a ‘wear and tear’ phenomenon. Genome Biol 5:212

    Article  PubMed  Google Scholar 

  56. Guo G, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environm 27:521–547

    Article  CAS  Google Scholar 

  57. Ouelhadj A, Kuschk P, Humbeck K (2006) Heavy metal stress and leaf senescence induce the barley gene HvC2d1 encoding a calcium-dependent novel C2 domain-like protein. New Phytol 170:261–273

    Article  CAS  PubMed  Google Scholar 

  58. Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    Article  CAS  PubMed  Google Scholar 

  59. Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49:865–879

    Article  CAS  PubMed  Google Scholar 

  60. Wang HJ, Wan AR, Hsu CM, Lee KW, Yu SM, Jauh GY (2007) Transcriptomic adaptations in rice suspension cells under sucrose starvation. Plant Mol Biol 63:441–463

    Article  CAS  PubMed  Google Scholar 

  61. Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149

    Article  CAS  PubMed  Google Scholar 

  62. Ulker B, Shahid Mukhtar M, Somssich IE (2007) The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 226:125–137

    Article  PubMed  Google Scholar 

  63. Wang XX, Wang B, Liu LJ, Cui XP, Yang JY, Wang H, Jiang H, Luo BB, Long Z, Dou WX, Zhang N, Peng DX (2009) Isolation of high quality RNA and construction of a suppression subtractive hybridization library from ramie (Boehmeria nivea L. Gaud.). Mol Biol Rep 37:2099–2103

    Article  PubMed  Google Scholar 

  64. Berri S, Abbruscato P, Faivre-Rampant O, Brasileiro AC, Fumasoni I, Satoh K, Kikuchi S, Mizzi L, Morandini P, Pè ME, Piffanelli P (2009) Characterization of WRKY co-regulatory networks in rice and Arabidopsis. BMC Plant Biol 9:120

    Article  PubMed  Google Scholar 

  65. Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact 20:492–499

    Article  CAS  PubMed  Google Scholar 

  66. Qiu D, Xiao J, Xie W, Cheng H, Li X, Wang S (2009) Exploring transcriptional signalling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice. BMC Plant Biol 9:74

    Article  PubMed  Google Scholar 

  67. Park SY, Yu JW, Park JS, Li J, Yoo SC, Lee NY, Lee SK, Jeong SW, Seo HS, Koh HJ, Jeon JS, Park YI, Paek NC (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649–1664

    Article  CAS  PubMed  Google Scholar 

  68. Walker EL, Connolly EL (2008) Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Curr Opin Plant Biol 11:530–535

    Article  CAS  PubMed  Google Scholar 

  69. Duc C, Cellier F, Lobreaux S, Briat JF, Gaymard F (2009) Regulation of iron homeostasis in Arabidopsis thaliana by the clock regulator time for coffee. J Biol Chem 284:36271–36281

    Article  CAS  PubMed  Google Scholar 

  70. Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503

    Article  CAS  PubMed  Google Scholar 

  71. Yang Y, Wu J, Zhu K, Liu L, Chen F, Yu D (2009) Identification and characterization of two chrysanthemum (Dendronthema × moriforlium) DREB genes, belonging to the AP2/EREBP family. Mol Biol Rep 36:71–81

    Article  CAS  PubMed  Google Scholar 

  72. Sperotto RA, Ricachenevsky FK, Duarte GL, Boff T, Lopes KL, Sperb ER, Grusak MA, Fett JP (2009) Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta 230:985–1002

    Article  CAS  PubMed  Google Scholar 

  73. Pinheiro GL, Marques CS, Costa MD, Reis PA, Alves MS, Carvalho CM, Fietto LG, Fontes EP (2009) Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 444:10–23

    Article  CAS  PubMed  Google Scholar 

  74. Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37:1125–1135

    Article  CAS  PubMed  Google Scholar 

  75. Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence–a genomic approach. Plant Biotechnol J 1:3–22

    Article  CAS  PubMed  Google Scholar 

  76. Balazadeh S, Riaño-Pachón DM, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol 10(Suppl 1):63–75

    Article  PubMed  Google Scholar 

  77. Zou X, Seemann JR, Neuman D, Shen QJ (2004) A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J Biol Chem 279:55770–55779

    Article  CAS  PubMed  Google Scholar 

  78. Rakwal R, Komatsu S (2004) Abscisic acid promoted changes in the protein profiles of rice seedling by proteome analysis. Mol Biol Rep 31:217–230

    Article  CAS  PubMed  Google Scholar 

  79. Xie Z, Zhang ZL, Hanzlik S, Cook E, Shen QJ (2007) Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene. Plant Mol Biol 64:293–303

    Article  CAS  PubMed  Google Scholar 

  80. Jiang W, Yu D (2009) Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC Plant Biol 9:96

    Article  PubMed  Google Scholar 

  81. Yang B, Jiang Y, Rahman MH, Deyholos MK, Kav NN (2009) Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments. BMC Plant Biol 9:68

    Article  PubMed  Google Scholar 

  82. Wang Z, Zhu Y, Wang L, Liu X, Liu Y, Phillips J, Deng X (2009) A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter. Planta 230:1155–1166

    Article  CAS  PubMed  Google Scholar 

  83. Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  84. Liu G, Greenshields DL, Sammynaiken R, Hirji RN, Selvaraj G, Wei Y (2007) Targeted alterations in iron homeostasis underlie plant defense responses. J Cell Sci 15:596–605

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil, grant 481131/2004-3 to JPF and scholarships to FKR and PKM) and HarvestPlus (Agreement number 6005-05). RAS was recipient of a scholarship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil). The authors thank IRGA (Instituto Rio-Grandense do Arroz) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janette Palma Fett.

Electronic supplementary material

Supplementary Table 1

Gene-specific PCR primers used for semi-quantitative and quantitative RT-PCR (DOC 39 kb)

Supplementary Table 2

Rice sequences up-regulated by Fe-excess treatment (DOC 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricachenevsky, F.K., Sperotto, R.A., Menguer, P.K. et al. Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence. Mol Biol Rep 37, 3735–3745 (2010). https://doi.org/10.1007/s11033-010-0027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0027-0

Keywords

Navigation