Skip to main content

Low Temperature Stress and Plant-Water Relationship: A Review

  • Chapter
  • First Online:
Physiological Processes in Plants Under Low Temperature Stress

Abstract

A common effect of several abiotic stresses is to cause tissue dehydration. Such dehydration is caused by the imbalance between root water uptake and leaf transpiration. Under some specific stress conditions, regulation of root water uptake is more crucial to overcome stress injury than regulation of leaf transpiration. The rate of root water uptake of a given plant is the result of its root hydraulic characteristics, which are ultimately regulated by aquaporin activity and, to some extent, by suberin deposition. Plant-water relations concern how plants control the hydration of their cells, including the collection of water from the soil, its transport within the plant, and its loss by evaporation from the leaves. Flow of water through the plant and soil over macroscopic distances is driven by gradients in hydrostatic pressure. Over microscopic distances (e.g., across semi-permeable membranes), it is driven by gradients in water potential. Evaporation of water from leaves is primarily controlled by stomata and, if not made good by the flow of water from the soil through the plant to the leaves, results in the plants’ wilting. Resistances to this flow are still not well understood. Plant water deficit is initiated as the crop demand for water exceeds the supply. The capacity of plants to meet the demand and thus avoid water deficit depends on their “hydraulic machinery.” This machinery determines the ability to transport sufficient amount of water from the soil to the atmosphere via the stomata in order to provide for transpiration, transpirational cooling, and carbon assimilation. Water is transported by way of the soil-plant-atmosphere continuum, and it is largely controlled by the resistances in the continuum as determined by root, stem, leaf, stomata, and cuticular hydraulic resistances. The gross effects of deficient and of excessive soil moisture on plant growth are well known, but controversy has existed for many years around the question whether the so-called available moisture is equally available for plant growth or available only with such increasing difficulty that plant growth functions are retarded before the wilting point is reached. Various measurable aspects of plant growth do not respond in the same manner to increasing moisture stress. Crops will respond to irrigations, although measured soil moisture stress is quite low.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Hamdeh NH, Reeder RC (2000) Soil thermal conductivity effects of density, moisture, salt concentration and organic matter. J Am Soil Sci Soc 64(4):1285–1290

    Article  CAS  Google Scholar 

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20(8):2117–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams WW III, Barker DH (1998) Seasonal changes in xanthophyll cycle-dependent energy dissipation in Yucca glauca Nuttall. Plant Cell Environ 21:501–511

    Article  CAS  Google Scholar 

  • Adams WW III, Demmig-Adams B (1995) The xanthophyll cycle and sustained thermal energy dissipation in Vinca minor and Euonymus kiautschovicus in winter. Plant Cell Environ 18:117–127

    Article  Google Scholar 

  • Agre P, Sasaki S, Chrispeels MJ (1993) Aquaporins: a family of water channel proteins. Am J Phys 265:F461

    CAS  Google Scholar 

  • Ahmad P, Prasad MNV (2012) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, Dordrecht, Heidelberg, London

    Book  Google Scholar 

  • Aktas H, Karni L, Chang DC, Turhan E, Bar-Tal A, Aloni B (2005) The suppression of salinity; associated oxygen radicals production, in pepper (Capsicum annuum L.) fruit, by manganese, zinc and calcium in relation to its sensitivity to blossom end rot. Physiol Plant 123:67–74

    Article  CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Allen J (1993) Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theo Biol 165:609–631

    Article  CAS  Google Scholar 

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6(1):36–42

    Article  CAS  PubMed  Google Scholar 

  • Allison SO (2005) Cheaters, diffusion and nutrient content decomposition by microbial enzymes in spatially structured environments. Ecol Tell 8(6):626–635

    Google Scholar 

  • Allison D, Wallenstein MD, Bradford MA (2010) Soil carbon response to warming depends on microbial physiology. Nat Geosci 3:336–340

    Article  CAS  Google Scholar 

  • Aloni B, Karni L, Deventurero G, Turhan E, Aktas H (2008) Changes in ascorbic acid concentration, ascorbate oxidase activity, and apoplastic pH in relation to fruit development in pepper (Capsicum annuum L.) and the occurrence of blossom end rot. J Hortic Sci Biotechnol 83:100–105

    Article  CAS  Google Scholar 

  • Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martínez-Zapater JM (2005) Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Plant Physiol 139:1304–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alscher RG, Donahue JL, Cramer C (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224–233

    Article  CAS  Google Scholar 

  • Alvarez-Uria P, Körner C (2007) Low temperature limits of root growth in deciduous forest and evergreen temperate tree species. Funct Ecol 21(2):211–218

    Article  Google Scholar 

  • Anchordoguy TJ, Alan SR, Carpenter JF, Crowe JH (1987) Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24:324–331

    Article  CAS  PubMed  Google Scholar 

  • Angadi SV, Cutforth HW, Miller PR (2000) Seeding management to reduce temperature stress in brassica species. In: Saskatchewan soils and crops proceedings. Semiarid Prairie Agricultural Research Centre, Saskatchewan, Canada

    Google Scholar 

  • Anza M, Riga P, Garbisu C (2005) Time course of antioxidant responses of Capsicum annuum subjected to progressive magnesium deficiency. Ann Appl Biol 146:123–134

    Article  CAS  Google Scholar 

  • Aroca R (2006) Exogenous catalase and ascorbate modify the effects of abscisic acid (ABA) on root hydraulic properties in Phaseolus vulgaris L. plants. J Plant Growth Regul 25:10–17

    Article  CAS  Google Scholar 

  • Aroca R, Tognoni F, Irigoyen JJ, Sánchez-Díaz M, Pardossi A (2001) Different root low temperature response of two maize genotypes differing in chilling sensitivity. Plant Physiol Biochem 39:1067–1073

    Article  CAS  Google Scholar 

  • Aroca R, Vernieri P, Irigoyen JJ, Sánchez-Díaz M, Tognoni F, Pardossi A (2003) Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci 165:671–679

    Article  CAS  Google Scholar 

  • Aroca R, Amodeo G, Fernández-Illescas S, Herman EM, Chaumont F, Chrispeel MJ (2005) The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol 137:341–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Alguacil MM, Vernieri P, Ruiz-Lozano JM (2008a) Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (sitiens). Microb Ecol 56:704–709

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008b) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63(1):43–57

    Article  CAS  PubMed  Google Scholar 

  • Artlip TS, Wisniewski ME (2002) Induction of proteins in response to biotic and abiotic stresses. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker Inc., New York, pp 657–679

    Google Scholar 

  • Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci U S A 93(23):13404–13409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aryal B, Neuner G (2010) Leaf wettability decreases along an extreme altitudinal gradient. Oecologia 162:1–9

    Article  PubMed  Google Scholar 

  • Assmann SM, Snyder JA, Lee YRJ (2000) ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of Arabidopsis have a wild-type stomatal response to humidity. Plant Cell Environ 23(4):387–395

    Article  CAS  Google Scholar 

  • Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response to simultaneous biotic and abiotic stress. Plant Physiol 162:2028–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baier M, Bittner A, Prescher A, van Buer J (2019) Preparing plants for improved cold tolerance by priming. Plant Cell Environ 42:782–800

    Article  CAS  PubMed  Google Scholar 

  • Balbuena TS, Salas JJ, Martínez-Force E, Garcés R, Thelen JJ (2011) Proteome analysis of cold acclimation in sunflower. J Proteome Res 10:2330–2346

    Article  CAS  PubMed  Google Scholar 

  • Balland V, Arp PA (2005) Modeling soil thermal conductivities over a wide range of conditions. J Environ Eng Sci 4(6):549–558

    Article  Google Scholar 

  • Bannister P, Neuner G (2001) Frost resistance and distribution of conifers. In: Bigras FJ, Colombo SJ (eds) Conifer cold hardiness. Kluwer Academic Publishers, Dordrecht, pp 3–21

    Chapter  Google Scholar 

  • Barnes JD, Cardoso-Vilhena J (1996) Interactions between electromagnetic radiation and cuticle. In: Kerstiens G (ed) Plant cuticles: an integrated functional approach. Bios Scientific Publishers, Lancaster, pp 157–174

    Google Scholar 

  • Barrero-Gil J, Huertas R, Rambla JL, Granell A, Salinas J (2016) Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments. Plant Cell Environ 39(10):2303–2318

    Article  CAS  PubMed  Google Scholar 

  • Bartels D (2005) Desiccation tolerance studied in the resurrection plant Craterostigma plantagineum. Integ Compara Biol 45(5):696–701

    Article  CAS  Google Scholar 

  • Bartwal A, Mall R, Lohani P, Guru SK, Arora S (2013) Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J Plant Growth Regul 32(1):216–232

    Article  CAS  Google Scholar 

  • Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510

    Article  CAS  PubMed  Google Scholar 

  • Belko N, Zaman-Allah M, Cisse N, Diop NN, Zombre G, Ehlers JD, Vadez V (2012) Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought-tolerant cowpea. Funct Plant Biol 39:306–322

    Article  PubMed  Google Scholar 

  • Benabdellah, K., Ruiz-Lozano, J.M. and Aroca, R. 2009. Hydrogen peroxide effects on root hydraulic properties and plasma membrane aquaporin regulation in Phaseolus vulgaris. Plant Mol Biol, 70: 647–661

    Google Scholar 

  • Bhandari K, Nayyar H (2014) Low temperature stress in plants: an overview of roles of cryoprotectants in defense, vol 1, 3rd edn. Springer, New York, pp 193–265

    Google Scholar 

  • Bhattacharya A (2019) Water use efficiency under changing climatic condition. In: Changing climate and resource efficiency in plants. Elsevier, Academic Press, USE, USE, pp 111–180

    Chapter  Google Scholar 

  • Bian SM, Jiang YW (2009) Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Scientia Hort 120:264–270

    Article  CAS  Google Scholar 

  • Bingzhe F, Fugui M, Ruifang L, Duowen S, Xiangwei H (2010) Effect of covering soil and irrigation on overwintering rate and yield of Silphium perfoliatum L. Chin J Grassl 32:106–109

    Google Scholar 

  • Blokhina OB, Chirkova TV, Fagerstedt KV (2001) Anoxic stress leads to hydrogen peroxide formation in plant cells. J Exp Bot 52:1179–1190

    Article  CAS  PubMed  Google Scholar 

  • Bloom AJ, Zwieniecki MA, Passioura JB, Randall LB, Holbrook NM, St Clair DA (2004) Water relations under root chilling in a sensitive and tolerant tomato species. Plant Cell Environ 27:971–979

    Article  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop Res 112:119–123

    Article  Google Scholar 

  • Boese SR, Wolfe DW, Melkonian JJ (1997) Elevated CO2 mitigates chilling-induced water stress and photosynthetic reduction during chilling. Plant Cell Environ 20(5):625–632

    Article  Google Scholar 

  • Bogdanović J, Mojović M, Milosavić N, Mitrović A, Vucinić Z, Spasojević I (2008) Role of fructose in the adaptation of plants to cold-induced oxidative stress. Eur Biophys J 37(7):1241–1246

    Article  PubMed  CAS  Google Scholar 

  • Bolek Y (2010) Genetic variability among cotton genotypes for cold tolerance. Field Crops Res 119(1):59–67

    Article  Google Scholar 

  • Bolger TP, Upchurch DR, McMichael BL (1992) Temperature effects on cotton root hydraulic conductance. J Environ Exp Bot 32(1):49–54

    Article  Google Scholar 

  • Bolt S, Zuther E, Zintl S, Hincha DK, Schmülling T (2017) ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. Plant Cell Environ 40:108–120

    Article  CAS  PubMed  Google Scholar 

  • Bouchabke-Coussa O, Quashie ML, Seoane-Redongo J, Fortabat M-N, Gery C, Yu A, Linderme D, Trouverie J, Granier F, Téoulé E, Durand-Tardif M (2008) ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance. BMC Plant Biol 8:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouman BAM, Humphreys E, Tuong TP, Barker R (2007) Rice and water. Adv Agron 92:187–237

    Article  CAS  Google Scholar 

  • Boursiac Y, Boudet J, Postaire O, Luu DT, Tournaire-Roux C, Maurel C (2008) Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signaling and plasma membrane internalization. Plant J 56:207–218

    Article  CAS  PubMed  Google Scholar 

  • Boyce RL, Lucero S (2002) Role of roots in winter water relations of Engelmann spruce saplings. Tree Physiol 19(13):893–898

    Article  Google Scholar 

  • Boyce RL, Friendland AJ, Webb ET, Herrick GT (1991) Modeling the effect of winter climate on high elevation red spruce shoot water contents. For Sci 37(6):1567–1580

    Google Scholar 

  • Boyer JS (1996) Advances in drought tolerance in plants. Adv Agron 56:187–218

    Article  Google Scholar 

  • Bramley H, Turner NC, Turner DW, Tyerman SD (2009) Roles of morphology, anatomy and aquaporins in determining contrasting hydraulic behavior of roots. Plant Physiol 150:348–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124(1–2):3–22

    Article  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2015) Biochemistry & molecular biology of plants, 2nd edn. Wiley Blackwell, West Sussex, UK

    Google Scholar 

  • Buchas GD (2001) Soil temperature regimes. In: Smith KA et al (eds) Soil and environmental analysis: physical methods. Marcel Dekkar, New York, pp 539–594

    Google Scholar 

  • Burghardt M, Burghardt A, Gall J, Rosenberger C, Riederer M (2008) Ecophysiological adaptations of water relations of Teucrium chamaedrys L. to the hot and dry climate of xeric limestone sites in Franconia (southern Germany). Flora 203:3–13

    Article  Google Scholar 

  • Byun YJ, Koo MY, Joo HJ, Ha-Lee YM, Lee DH (2014) Comparative analysis of gene expression under cold acclimation, deacclimation and reacclimation in Arabidopsis. Physiol Plant 152:256–274

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Magwanga RO, Xu Y, Zhou Z, Wang X, Hou Y, Wang Y, Zhang Y, Liu F, Wang K (2019) Comparative transcriptome, physiological and biochemical analyses reveal response mechanism mediated by CBF4 and ICE2 in enhancing cold stress tolerance in Gossypium thurberi. AoB Plants 11(6):plz045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmak I (1994) Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium-deficient leaves, but not in phosphorus-deficient leaves. J Exp Bot 45:1259–1266

    Article  CAS  Google Scholar 

  • Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos PS, Quartin V, Ramalho JC, Nunes MA (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol 160:283–292

    Article  CAS  PubMed  Google Scholar 

  • Candan N, Tarhan L (2003) Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves. Plant Physiol Biochem 41:35–40

    Article  CAS  Google Scholar 

  • Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta 199:372–381

    Article  CAS  Google Scholar 

  • Cavender-Bares J (2005) Impacts of freezing on long distance transport in woody plants. In: Holbrook NM, Zweiniecki MA (eds) Vascular transport in plants. Elsevier, Boston, pp 401–424

    Chapter  Google Scholar 

  • Chaerle L, Saibo N, van der Straeten D (2005) Tuning to pores: towards engineering plants for improved water use efficiency. Trends Biotech 23:308–315

    Article  CAS  Google Scholar 

  • Chakravarthy VSK, Reddy TP, Reddy VD, Rao KV (2012) Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment. Crit Rev Biotechnol 8551:1–18

    Google Scholar 

  • Chartzoulakis K, Patakasb A, Kofidisc G, Bosabalidisc A, Nastoub A (2002) Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci Hortic 95:39–50

    Article  CAS  Google Scholar 

  • Chavarria G, dos Santos HP (2012) Plant water relations: absorption, transport and control mechanism. In: Montanaro G (ed) Advances in selected plant physiology aspects. InTech, Croatia, pp 105–132

    Google Scholar 

  • Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42(1):1–16

    Article  CAS  Google Scholar 

  • Chaves MM, Oiveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55(407):2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant response to drought: from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen PM, Gusta LV (1978) The role of water in cold hardiness of winter cereals. In: Li PH, Sakai A (eds) Plant cold hardiness and freezing stress: mechanisms and crop implications. Academic Press, New York, pp 165–173

    Chapter  Google Scholar 

  • Cheng W-H, Endo A, Zhou L, Penney J, Chen H-C, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase / reductase in Arabidopsis glucose signalling and abscisic acid biosynthesis and functions. Plant Cell 14(11):2732–2743

    Article  CAS  Google Scholar 

  • Chiemeka IU (2010) Soil temperature profile of Uturu, Nigeria. Pacific J Sci Tech 11(1):478–482

    Google Scholar 

  • Chimenti CA, Marcantonio M, Hall AJ (2006) Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. Field Crops Res 95:305–315

    Article  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167–174

    Article  CAS  PubMed  Google Scholar 

  • Clarkson, D.T. 1976. The influence of temperature on the exudation of xylem sap from detached root systems of rye (Secale cereale) and barley (Hordeum vulgare). Planta, 132(3): 297–304

    Google Scholar 

  • Cochard H (2002) A technique for measuring xylem hydraulic conductance under high negative pressure. Plant Cell Environ 25(6):815–819

    Article  Google Scholar 

  • Colombo SJ, Zhao S, Blumwald E (1995) Frost hardiness gradients in shoots and roots of Picea mariana seedlings. Scand J For Res 10:32–36

    Article  Google Scholar 

  • Conant RT, Drijber RA, Haddix MC (2008) Sensitivity of organic matter decomposition to warming varies with its quality. Glob Chang Biol 14(4):868–877

    Article  Google Scholar 

  • Condon AG, Farquhr GD, Richards RA (1990) Genetic variation in carbon isotope discrimination and transpiration efficiency in wheat. Leaf gas exchange and whole plant studies. Ayst J Plant Physiol 17:9–22

    Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR (2015) Priming for enhanced defense. Annu Rev Phytopathol 53:97–119

    Article  CAS  PubMed  Google Scholar 

  • Conyers, M., Newton, P., Condon, J.R, Poile, G., Mele, P. and Ash, G.J. 2012. Long term trials end with a quasi–equilibrium between C, N, and pH and implication for C sequestration. Soil Res 50(7): 527–535

    Google Scholar 

  • Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmülling T (2019) Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ 42(3):998–1018

    Article  CAS  PubMed  Google Scholar 

  • Costa JM, Ortudo MF, Chaves MM (2007) Deficit irrigation as a strategy to save water physiology and potential application to horticulture. J Int Plant Biol 49(10):1421–1434

    Article  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57(3):449–459

    Article  PubMed  CAS  Google Scholar 

  • Cowling JE, Kedrowski RA (1980) Winter water relations of native and introduced evergreens in interior Alaska, USA. Can J Bot 58(1):94–99

    Article  Google Scholar 

  • Crawford NM, Guo FQ (2005) New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci 10:195–200

    Article  CAS  PubMed  Google Scholar 

  • Cruz R, Milach S (2004) Cold tolerance at the germination stage of rice: methods of evaluation and characterization of genotypes. Sci Agric 61:1–8

    Article  Google Scholar 

  • Dalla-Salda G, Martínez-Meier A, Cochard H, Rozenberg P (2009) Variation of wood density and hydraulic properties of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) clones related to a heat and drought wave in France. Forest Ecol Manage 257:182–189

    Article  Google Scholar 

  • DaMatta FM, Ramalho JDC (2006) Impacts of drought and temperature stress on coffee physiology and production: a review. Braz J Plant Physiol 18(1):55–81

    Article  CAS  Google Scholar 

  • Daniels MJ, Yeager M (2005) Phosphorylation of aquaporin PvTIP3;1 defined by mass spectrometry and molecular modeling. Biochemistry 44:14443–14454

    Article  CAS  PubMed  Google Scholar 

  • Daniels MJ, Chaumont F, Mirkov TE, Chrispeels MJ (1996) Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell 8:587–599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and seedlings. Plant Physiol 116:1351–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deane C (1994) Whole plant and tissue culture studies on frost tolerance in cauliflower. Ph. D. Thesis. The National University of Ireland

    Google Scholar 

  • Decker KT, Wang D, Waite C, Scherbatskoy T (2003) Snow removal and ambient air temperature in northern Vermont. J Am Soil Sci Soc 67(4):4234–1242

    Article  Google Scholar 

  • DeLucia EH, Heckathorn SA, Day TA (1992) Effects of soil temperature on growth, biomass allocation and resource acquisition of Andropogon gerardii Vitman. New Phytol 120(4):543–549

    Article  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Deng B, Du W, Liu C, Sun W, Tian S, Dong H (2012) Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: low resource requirement confers polytolerance in polyploids? Plant Growth Regul 66:37–47

    Article  CAS  Google Scholar 

  • Devacht S, Lootens P, Roldán-Ruiz I, Carlier L, Baert J, Van Waes J, Van Bockstaele E (2009) Influence of low temperatures on the growth and photosynthetic activity of industrial chicory Cichorium intybus L. partim. Photosynthetica 47(3):372–380

    Article  CAS  Google Scholar 

  • Devi MJ, Sinclair TR, Vadez V (2010) Genotypic variation in peanut for transpiration response to vapor pressure deficit. Crop Sci 50:191–196

    Article  Google Scholar 

  • Devine M, Duke OS, Fedtke C (1993) Physiology of herbicide action. P.T.R Prentice–Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Díaz P, Borsani O, Monza J (1999) Acumulación de prolina en plantas en respuesta al estrés osmotico. Agrociencia 3(1):1–10

    Google Scholar 

  • Dichio B, Xiloyannis C, Sofo A, Montanaro G (2006) Osmotic regulation in leaves and roots of olive tree (Olea europaea L.) during water deficit and rewatering. Tree Physiol 26:179–185

    Article  PubMed  Google Scholar 

  • Diehl RC, Guinn EJ, Capp MW, Tsodikov OV, Record MT Jr (2013) Quantifying additive interactions of the osmolyte proline with individual functional groups of proteins: comparisons with urea and glycine betaine, interpretation of m-values. Biochemistry 52(35):5997–6010

    Article  CAS  PubMed  Google Scholar 

  • Dobra J, Motyka V, Dobrev P, Malbeck J, Prasil IT, Haisel D, Gaudinova A, Havlova M, Gubis J, Vankova R (2010) Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline contents. J Plant Physiol 167:1360–1370

    Article  CAS  PubMed  Google Scholar 

  • Dudal R (1976) Inventory of major soils of the world with special reference to mineral stress. In: Wright MJ (ed) Plant adaption to mineral stress in problem soils. Cornell Univ. Agricultural Experiment Station, Ithaca, New York, pp 3–23

    Google Scholar 

  • Duman JG, Wisniewski MJ (2014) The use of antifreeze proteins for frost protection in sensitive crop plants. Environ Exp Bot 106:60–69

    Article  CAS  Google Scholar 

  • Dwivedi P, Raghvendra AS (2004) Modulation of osmatic stress effects on photosynthesis and respiration by temperature in mesophyll protoplast of pea. Ind J Exp Biol 42:1208–1211

    Google Scholar 

  • Elias EA, Cichota R, Torraiaini HH, van Lier QD (2004) Analytical and soil temperature model: correction for temporal variation of daily amplitude. Am Soil Sci Soc J 68(3):784–788

    CAS  Google Scholar 

  • Elizaberashivili ES, Urshadze TF, Elizaberashivili M, Elizaberashivili SE, Schafer M (2010) Temperature regimes of some types in Georgia. Eurasian Soil Sci 43(4):427–435

    Article  Google Scholar 

  • Ennajeh M, Vadel AM, Cochard H, Khemir H (2010) Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. J Hort Sci Biotech 85(4):289–294

    Article  Google Scholar 

  • Enns LC, Mccully ME, Canny MJ (2006) Branch roots of young maize seedlings, their production, growth, and phloem supply from the primary root. Funct Plant Biol 33:391–399

    Article  PubMed  Google Scholar 

  • Epand RM, Shai Y, Segrest JP, Anantharamaiah G, M. (1995) Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers 37:319–338

    Article  CAS  PubMed  Google Scholar 

  • Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60:2235–2248

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Aziz T, Wahid A, Lee DJ, Siddique KHM (2009a) Chilling tolerance in maize: agronomic and physiological approaches. Crop Pasture Sci 60:501–516

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009b) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Fernie AR, Geigenberger P, Stitt M (2005) Flux an important, but neglected, component of functional genomics. Curr Opin Plant Biol 8:174–182

    Article  CAS  PubMed  Google Scholar 

  • Fischer RA, Turner NC (1978) Plant productivity in arid and semiarid zones. Rev Plant Physiol 29:277–317

    Article  CAS  Google Scholar 

  • Fitter A, Hay R (2002) Environmental physiology of plants. Academic Press, San Diego, CA

    Google Scholar 

  • Fletcher AL, Sinclair TR, Allen LH (2007) Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’ and commercial soybean. Environ Exp Bot 61:145–151

    Article  CAS  Google Scholar 

  • Flexas J, Medrano H (2002) Energy dissipation in C3 plants under drought. Funct Plant Biol. 29:1209–1215

    Article  CAS  PubMed  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1 is gated by the circadian clock. Plant Physiol 137:961–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Foyer CH, Vanacker H, Gornez LD, Harbinson J (2002) Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review. Plant Physiol Biochem 40:659–668

    Article  CAS  Google Scholar 

  • Fritz M, Ehwald R (2011) Mannitol permeation and radial flow of water in maize roots. New Phytol 189:210–217

    Article  CAS  PubMed  Google Scholar 

  • Fu P, Wilen RW, Wu GH, Robertson AJ, Gusta L (1999) Dehydrin gene expression and leaf water potential differs between spring and winter cereals during cold acclimation. J Plant Physiol 156(3):394–400

    Article  Google Scholar 

  • Garcia-Mata C, Lamattina L (2003) Abscisic acid, nitric oxide and stomatal closure: is nitrate reductase one of the missing links? Trends Plant Sci 8:20–26

    Article  CAS  PubMed  Google Scholar 

  • Geiger DR, Servaites JC, Shieh W-J (1992) Balance in the source-sink system: a factor in crop productivity. In: Baker NR, Thomas H (eds) Crop photosynthesis: spatial and temporal determinants. Elsevier Science Publishers, Amsterdam, pp 155–176

    Chapter  Google Scholar 

  • Geiger R, Aron RN, Todhunter P (2003) The climate near the ground. Rownaan and Little Field Publishers, Inc., Lanham, pp 42–50

    Google Scholar 

  • Gholipoor M, Prasad PVV, Mutava RN, Sinclair TR (2010) Genetic variability of transpiration response to vapor pressure deficit among sorghum genotypes. Field Crops Res. 119:85–90

    Article  Google Scholar 

  • Gigon A, Matos AR, Laffray D, Zuily-Fodil Y, Pham-Thi AT (2004) Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Ann Bot 94:345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmour SJ, Zarka DJ, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giri J (2011) Glycine betaine and abiotic stress tolerance in plants. Plant Signal Behav 6:1746–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Göbel L, Coners H, Hertel D, Willinghöfer S, Leuschner C (2019) The role of low soil temperature for photosynthesis and stomatal conductance of three graminoids from different elevations. Front Plant Sci 10:330

    Article  PubMed  PubMed Central  Google Scholar 

  • Gowda VRP, Henry A, Yamauchi A, Shashidhar HE, Serraj R (2011) Root biology and genetic improvement for drought avoidance in rice. Field Crops Res 122:1–3

    Article  Google Scholar 

  • Grewal JS, Singh SN (1980) Effect of potassium nutrition on frost damage and yield of potato plants on alluvial soils of the Punjab (India). Plant Soil 57:105–110

    Article  CAS  Google Scholar 

  • Grossi M, Giorni E, Rizza F, Stanca AM, Cattivelli L (1998) Wild and cultivated barleys show differences in the expression pattern of a cold-regulated gene family under different light and temperature conditions. Plant Mol Biol 38(6):1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Guo HM, Li ZC, Zhang H, Xin YZ, Cheng HM (2011) Cloning of cotton CBF gene for cold tolerance and its expression in transgenic tobacco. Acta Agron Sinica 37:286–293

    Article  CAS  Google Scholar 

  • Guo X, Liu D, Chong K (2018) Cold signaling in plants: insights into mechanisms and regulation. J Integr Plant Biol 60:745–756

    Article  PubMed  Google Scholar 

  • Gusta LV, Wisniewski M, Tanino KK (2009) In: plant cold hardiness: from the laboratory to the field. Centre for Biosciences and Agriculture International, Oxfordshire

    Book  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Biol 41:187–223

    Article  CAS  Google Scholar 

  • Guy C, Li QB (1998) The organization and evolution of the spinach stress 70 molecular chaperone gene family. Plant Cell 10:539–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy CL, Huber JL, Huber SC (1992) Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol 100:502–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy C, Haskell D, Li QB (1998) Association of proteins with the stress 70 molecular chaperones at low temperature: evidence for the existence of cold labile proteins in spinach. Cryobiology 36:301–314

    Article  CAS  Google Scholar 

  • Hacker J, Ladinig U, Wagner J, Neuner G (2011) Inflorescences of alpine cushion plants freeze autonomously and may survive subzero temperatures by supercooling. Plant Sci 180:149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakerlerler H, Oktay M, Eryüce N, Yagmur B (1997) Effect of potassium sources on the chilling tolerance of some vegetable seedlings grown in hotbeds. In: Johnston AE (ed) Food security in the WANA region, the essential need for balanced fertilization. International Potash Institute, Basel, pp 317–327

    Google Scholar 

  • Haldimann P (1999) How do changes in temperature during growth affect leaf pigment composition and photosynthesis in Zea mays genotypes differing in sensitivity to low temperature? J Exp Bot 50(333):543–550

    Article  CAS  Google Scholar 

  • Halliwell B (1987) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem Phys Lipids 44:327–340

    Article  CAS  Google Scholar 

  • Hanhong B, Eliot H, Richard S (2005) Exogenous trehalose promotes non-structural carbohydrate accumulation and induces chemical detoxification and stress response proteins in Arabidopsis thaliana grown in liquid culture. Plant Sci 168:1293–1301

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, Staden JV (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Harwood JL (1997) Plant lipid metabolism. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic Press, San Diego, pp 237–271

    Chapter  Google Scholar 

  • Hasanuzzaman, M., Nahar, K. and Fukita, M. 2013. Extreme temperature responses, oxidative stress and antioxidant defense in plants. In: K. Vahdati, and C. Leslie, (ed.).,Abiotic stress—plant responses and applications in agriculture, chapter no. 6. INTECH, DOI: https://doi.org/10.5772/54833

  • Hattori T, Sonobe K, Araki H, Inanaga S, An P, Morita S (2008) Silicon application by sorghum through the alleviation of stress induced increase in hydraulic resistance. J Plant Nutr 31:1482–1495

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B, Matraszek R, Szymanska M (2010) Selenium modifies the effect of short-term chilling stress on cucumber plants. Biol Trace Elem Res 138(1–3):307–315

    Article  CAS  PubMed  Google Scholar 

  • Hetherington AM (2001) Guard cell signaling. Cell 107:711–714

    Article  CAS  PubMed  Google Scholar 

  • Hilker M, Schwachtje J, Baier M, Balazadeh S, Bäurle I, Geiselhardt S, Hincha DK, Kunze R, Mueller-Roeber B, Rillig MC, Rolff J, Romeis T, Schmülling T, Steppuhn A, van Dongen J, Whitcomb SJ, Wurst S, Zuther E, Kopka J (2016) Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev Camb Philos Soc 91(4):1118–1133

    Article  PubMed  Google Scholar 

  • Hincha DK, Zuther E, Heyer AG (2003) The preservation of liposomes by raffinose family oligosaccharides during drying is mediated by effects on fusion and lipid phase transitions. Biochim Biophys Acta Biomembr 1612(2):172–177

    Article  CAS  Google Scholar 

  • Hirasawa R, Yokoigawa K, Isobe Y, Kawai H (2001) Improving the freeze tolerance of baker’s yeast by loading with trehalose. Biosci Biotechnol Biochem 65:522–526

    Article  CAS  PubMed  Google Scholar 

  • Ho SL, Chao YC, Tong WF, Yu SM (2001) Sugar co-ordinately and differentially regulates growth- and stress-related gene expression via a complex signal transduction network and multiple control mechanisms. Plant Physiol 125:877–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoermiller II, Naegela T, Augustin H, Weckwerth W, Hever AG (2017) Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thaliana. Plant Cell Environ 40(5):602–610

    Article  CAS  PubMed  Google Scholar 

  • Hopkins WG (1999) The physiology of plants under stress. In: Introduction to plant physiology, 2nd edn. Wiley, New York, pp 451–475

    Google Scholar 

  • Horváth I, Glatz A, Varvasovszki V, Torok Z, Pali T, Balogh G, Kovacs E, Nadasdi L, Benko S, Joo F, Vigh L (1998) Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a ‘fluidity gene’. Proc Natl Acad Sci U S A 95(7):3513–3518

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsiao T (1973) Plant responses to water stress. Ann Rev Plant Physiol 24:519–570

    Article  CAS  Google Scholar 

  • Hsiao TC, Läuchli A (1986) Role of potassium in plant–water relations. In: Tinker B, Läuchli A (eds) Advances in plant nutrition, vol 2. Praeger Scientific, New York, pp 281–311

    Google Scholar 

  • Hsu SY, Hsu YT, Kao CH (2003) The effect of polyethylene glycol on proline accumulation in rice leaves. Biol Plant 46:73–78

    Article  CAS  Google Scholar 

  • Huang B, Johnson JW, Box JE, NeSmith DS (1997) Root characteristics and hormone activity of wheat in response to hypoxia and ethylene. Crop Sci 37:812–818

    Article  CAS  Google Scholar 

  • Hughes MA, Dunn MA (1990) The effect of temperature on plant growth and development. Biotechnol Genet Eng Rev 8:161–188

    Article  CAS  Google Scholar 

  • Hughes MA, Dunn MA (1996) The molecular biology of plant acclimation to low temperature. J Exp Bot 47(296):291–305

    Article  CAS  Google Scholar 

  • Hughes MA, Pearce RS (1988) Low temperature treatment of barley plants causes altered gene expression in shoot meristems. J Exp Bot 39:1461–1467

    Article  Google Scholar 

  • Huner NPA, Öquist G, Hurry VM, Krol M, Falk S, Griffith M (1993) Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth Res 37(1):19–39

    Article  CAS  PubMed  Google Scholar 

  • Huner NPA, Oquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Hurry VM, Malmberg G, Gardestorm P, Oquist G (1994) Effects of a short term shift to low temperature and of long term cold hardening on photosynthesis and ribulose-1, 5-bisphosphate carboxylase/oxygenase and sucrose phosphate activity in leaves of winter rye (Secale cereale L.). Plant Physiol 106:983–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurry V, Huner N, Selstam E, Gardeström P, Öquist G (1998) Photosynthesis at low growth temperatures. In: Raghavendra AS (ed) Photosynthesis. A comprehensive treatise. Cambridge University Press, Cambridge, pp 238–249

    Google Scholar 

  • Hussain S, Khan F, Cao W, Wu L, Geng M (2016) Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front Plant Sci 7:439

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Huxman TE, Monson RK (2003) Stomatal responses of C3, C3–C4 and C4 Flaveria species to light and intercellular CO2 concentration: implications for the evolution of stomatal behavior. Plant Cell Environ 26:313–322

    Article  CAS  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53(1):225–245

    Article  CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  Google Scholar 

  • Irvine J, Grace J (1997) Continuous measurements of water tensions in the xylem of trees based on elastic properties of wood. Planta 202(4):455–461

    Article  CAS  Google Scholar 

  • Ishikawa HA (1996) Ultrastructural features of chilling injury: injured cells and the early events during chilling of suspension cultured mung bean cells. Am J Bot 83:825–835

    Article  Google Scholar 

  • Islam MA, MacDonald SE, Zwiazek JJ (2003) Responses of black spruce (Picea mariana) and tamarack (Larix laricina) to flooding and ethylene. Tree Physiol 23:545–552

    Article  PubMed  Google Scholar 

  • Jackson MB, Saker LR, Crisp CM, Else MA, Janowiak F (2003) Ionic and pH signaling from roots to shoots of flooded tomato plants in relation to stomatal closure. Plant Soil 253:103–113

    Article  CAS  Google Scholar 

  • Jan NHM, Andrabi KI (2009) Cold resistance in plants: a mystery unresolved. Electr J Biotech 12:1–15

    Article  Google Scholar 

  • Janda T, Szalai G, Tari I, Paldi E (1997) Exogenous salicylic acid has an effect on chilling symptoms in maize (Zea mays L.) plants. In: Sowinski P, Zagdanska B, Aniol A, Klaus P (eds) Crop development for cool and wet European climate. ECSP-EEC-EAEC, Brussels, Belgium, pp 179–187

    Google Scholar 

  • Janda T, Szalai G, Tari I, Paldi E (1999) Hydroponic treatment with salicylic acid decreases the effect of chilling injury in maize (Zea mays L.) plants. Planta 208:175–180

    Article  CAS  Google Scholar 

  • Janda T, Szalai S, Antunovics ZS, Horvath E, Paldi E (2000) Effect of benzoic acid and aspirin on chilling tolerance and photosynthesis in young maize plants. Maydica 45:29–33

    Google Scholar 

  • Jang JC, Sheen J (1997) Sugar sensing in higher plants. Trends Plant Sci 2:208–214

    Article  Google Scholar 

  • Jang JY, Kim DG, Kim YO, Kim JS, Kang HS (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54:713–725

    Article  CAS  PubMed  Google Scholar 

  • Janmohammadi M, Zolla L, Rinalducci S (2015) Low temperature tolerance in plants changes at the protein level. Phytochemistry 117:76–89

    Article  CAS  PubMed  Google Scholar 

  • Janowiak F, Markowski A (1994) Changes in leaf water relations and injuries in maize seedlings induced by different chilling conditions. J Agron Crop Sci 172:19–28

    Article  Google Scholar 

  • Janská A, Maršík P, Zelenková S, Ovesná J (2010) Cold stress and acclimation—what is important for metabolic adjustment? Plant Biol 12:395–405

    Article  PubMed  CAS  Google Scholar 

  • Javier PDJ, José IJ, Manuel SD (1997) Chilling of drought-hardened and non-hardened plants of different chilling-sensitive maize lines changes in water relations and aba contents. Plant Sci 122:71–79

    Article  Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Güclü J, Vinh J, Heyes J, Franck KI, Schäffner AR, Bouchez D, Maurel C (2003) Role of a single aquaporin isoform in root water uptake. Plant Cell 15:509–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen RD, Taylor SA (1961) Effect of temperature on water transport through plants. Plant Physiol 36(5):639–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon J, Kim NY, Kim S, Kang NY, Novák O, Ku S-J, Cho C, Lee DJ, Lee E-J, Strand M, Kim J (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371–23386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia WS, Wang YQ, Zhang SQ, Zhang JH (2002) Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. J Exp Bot 53:2201–2206

    Article  CAS  PubMed  Google Scholar 

  • Jiang QW, Kiyoharu O, Ryozo I (2002) Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol 129:1880–1891

    Article  CAS  Google Scholar 

  • Jing Z, Bo Z, XiaoFen J, RiHe P, YuShan Q, Zhen Z (2008) Cloning and analysis of CBF transcription factors from Brassica napus cv. Huyou 15. Plant Physiol Commun 44:1106–1112

    Google Scholar 

  • Johnson FH, Eyring H, Polissar MJ (1954) The kinetic basis of molecular biology. John Wiley and Sons, New York

    Google Scholar 

  • Jonytiene, V., Burbulis, N., Kupriene, R. and Blinstrubiene, A. 2012. Effect of exogenous proline and de-acclimation treatment on cold tolerance in Brassica napus shoots cultured in-vitro. J Food Agric Environ, 10(1): 327–330

    Google Scholar 

  • Jouve L, Engelmann F, Noirot M, Charrier A (1993) Evaluation of biochemical markers (sugar, proline, malondialdehyde and ethylene) for cold sensitivity in microcuttings of two coffee species. Plant Sci 91:109–116

    Article  CAS  Google Scholar 

  • Kacperska A (2004) Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? Physiol Plant 122:159–168

    Article  CAS  Google Scholar 

  • Kafkafi U (1990) Impact of potassium in relieving plants from climatic and soil-induced stresses. In: Johnston AE (ed) Food security in the WANA region, the essential need for balanced fertilization. International Potash Institute, Basel, pp 317–327

    Google Scholar 

  • Kaiser C, Meyer H, Biasi C, Rusalimova O, Barsukov P, Richter A (2007) Conservation of soil organic matter through cryoturbation in arctic soils in Siberia. J Appl Soil Ecoli 112(G2):173–183

    Google Scholar 

  • Kaldenhoff R, Grote K, Zhu JJ, Zimmermann U (1998) Significance of plasmalemma aquaporins for water transport in Arabidopsis thaliana. Plant J 14:121–128

    Article  CAS  PubMed  Google Scholar 

  • Kamaluddin M, Zwiazek JJ (2002) Ethylene enhances water transport in hypoxic aspen. Plant Physiol 128:962–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HM, Saltveit ME (2002) Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115:571–576

    Article  CAS  PubMed  Google Scholar 

  • Kang GZ, Wang CH, Sun GC, Wang ZX (2003a) Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ Exp Bot 50:9–15

    Article  CAS  Google Scholar 

  • Kang GZ, Wang ZX, Sun GC (2003b) Participation of H2O2 in enhancement of cold chilling by salicylic acid in banana seedlings. Acta Bot Sin 45:567–573

    CAS  Google Scholar 

  • Kang J, Zhang H, Sun T, Shi Y, Wang J, Zhang B, Wang Z, Zhou Y, Gu H (2013) Natural variation of C-repeat-binding factor (CBFs) genes is a major cause of divergence in freezing tolerance among a group of Arabidopsis thaliana populations along the Yangtze River in China. New Phytol 199:1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Karabudak T, Bor M, Özdemir F, Türkan I (2014) Glycine betaine protects tomato (Solanum lycopersicum) plants at low temperature by inducing fatty acid desaturase7 and lipoxygenase gene expression. Mol Biol Rep 41(3):1401–1410

    Article  CAS  PubMed  Google Scholar 

  • Kargiotidou A, Kappas I, Tsaftaris A, Galanopoulou D, Farmaki T (2010) Cold acclimation and low temperature resistance in cotton: Gossypium hirsutum phospholipase dalpha isoforms are differentially regulated by temperature and light. J Exp Bot 61:2991–3002

    Article  CAS  PubMed  Google Scholar 

  • Karpinski S, Wingsle G, Karpinska B, Hällgren J-E (2002) Low-temperature stress and antioxidant defense mechanisms in higher plants. In: Inze D, van Montagu M (eds) Oxidative stress in plants. Taylor & Francis, London, pp 69–103

    Google Scholar 

  • Kato Y, Okami M (2011) Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions. Ann Bot 108(3):575–583

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato T, Tang Y, Gu S, Hirota M, Du M, Li Y, Zhao X (2006) Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan plateau. Glob Chang Biol 12(7):1285–1298

    Article  Google Scholar 

  • Katsuhara M, Otsuka T, Ezaki B (2005) Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for recovery of growth in Arabidopsis. Plant Sci 169:369–373

    Article  CAS  Google Scholar 

  • Keane RE, Mahalovich MF, Bollenbacher BL, Manning ME, Loehman RA, Jain TB, Holsinger LM, Larson AJ (2018) 2018. In: Halofsky JE, Peterson DL (eds) Effects of climate change on forest vegetation in the northern Rockies, vol 63. Springer International Publishing, Cham, Switzerland, pp 59–95

    Google Scholar 

  • Kenefick DG, Koepke JA, Sutton F (2002) Plant water uptake by hard red winter wheat (Triticum aestivum L.) genotypes at 2°C and low light intensity. BMC Plant Biol 2:8.1

    Article  Google Scholar 

  • Kerstiens G (1996) Diffusion of water vapour and gases across cuticles and through stomatal pores presumed closed. In: Kerstiens G (ed) Plant cuticles: an integrated functional approach. Bios Scientific Publishers, Lancaster, pp 121–134

    Google Scholar 

  • Khanna-Chopra R, Singh S (2011) Approaches to increase water use efficiency in horticultural and grain crops—an overview. Plant Stress 5(Special Issue 1):52–63

    Google Scholar 

  • Kholova J, Hash CT, Kumar PL, Yadav RS, Kocova M, Vadez V (2010) Terminal drought-tolerant pearl millet Pennisetum glaucum (L.) R. Br. Have high leaf ABA and limit transpiration at high vapour pressure deficit. J Exp Bot 61:1431–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiani SP, Talia P, Maury P, Grieu P, Heinz R, Perrault A, Nishinakamasu V, Hopp E, Gentzbittel L, Paniego N, Sarrafi A (2007) Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci 172(4):773–787

    Article  CAS  Google Scholar 

  • Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Htwe NMPS, Fujita Y, Sekita S, Shinozaki K, Yamaguchi-Shinozaki K (2015) Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J 81(3):505–518

    Article  CAS  PubMed  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant response to stress. Crit Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  • Kirkham MB (2005) Principles of soil and plant water relations. Elsevier Academic Press, San Diego, CA

    Google Scholar 

  • Kirungu JN, Deng Y, Cai X, Magwanga RO, Zhou Z, Wang X, Wang Y, Zhang Z, Wang K, Liu F (2018) Simple sequence repeat (SSR) genetic linkage map of D genome diploid cotton derived from an interspecific cross between Gossypium davidsonii and Gossypium klotzschianum. Int J Mol Sci 19(1):E204

    Article  PubMed  CAS  Google Scholar 

  • Knaupp M, Mishra KB, Nedbal L, Heyer AG (2011) Evidence for a role of raffinose in stabilizing photosystem II during freeze – thaw cycles. Planta 234(3):477–486

    Article  CAS  PubMed  Google Scholar 

  • Knipfer T, Fricke W (2010) Root pressure and solute reflection coefficient close to unity exclude a purely apoplastic pathway of radial water transport in barley (Hordeum vulgare). New Phytol 187:159–170

    Article  PubMed  Google Scholar 

  • Knipfer T, Fricke W (2011) Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.). J Exp Bot 62:717–733

    Article  CAS  PubMed  Google Scholar 

  • Kocacinar F, McKown AD, Sage TL, Sage RF (2008) Photosynthetic pathway influences xylem structure and function in Flaveria (Asteraceae). Plant Cell Environ. 31:1363–1376

    Article  CAS  PubMed  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Ann Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday AS (2001) Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiol Plant 113:323–331

    Article  CAS  PubMed  Google Scholar 

  • Kosová K, Vitamvas P, Prasil IT (2007) The role of dehydrins in plant response to cold. Biol Plant 51:601–617

    Article  Google Scholar 

  • Koster KL, Lynch DV (1992) Solute accumulation and compartmentation during the cold acclimation of puma rye. Plant Physiol 98(1):108–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Kramer PJ (1940) Root resistance as a cause of decreased water absorption by plants at low temperatures. Plant Physiol 15(1):63–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer PJ (1942) Species difference with respect to water absorption at low soil temperatures. Am J Bot 29(10):828–832

    Article  Google Scholar 

  • Kramer PJ (1969) Plant and soil water relations. In: A modern synthesis. McGraw Hill, New York, NY

    Google Scholar 

  • Kramer PJ, Boyer JS (1995) In water relations of plants and soils. Academic Press, San Diego

    Google Scholar 

  • Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol 44:67–75

    Article  CAS  PubMed  Google Scholar 

  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ. 23:337–350

    Article  CAS  Google Scholar 

  • Krause GH (1994) Photoinhibition induced by low temperatures. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis—from molecular mechanisms to the field. Bios Scientific Publishers, Oxford, pp 331–348

    Google Scholar 

  • Kreyling J, Wiesenberg GLB, Thiel D, Wohlfart C, Huber G, Walter J, Jentsch A, Konnert M, Beierkuhnlein C (2010) Cold hardiness of Pinus nigra Arnold as influenced by geographic origin, warming, and extreme summer drought. Env Exp Bot 78:99–108

    Article  Google Scholar 

  • Kubien DS, von Caemmerer S, Furbank RT, Sage RF (2003) C4 photosynthesis at low temperature. A study using transgenic plants with reduced amounts of rubisco. Plant Physiol 132:1577–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Malik J, Thakur P, Kaistha S, Sharma KD, Upadhyaya HD, Berger JD, Nayyar H (2011) Growth and metabolic responses of contrasting chickpea (Cicer arietinum) genotypes to chilling stress at reproductive phase. Acta Physiol Plant 33:779–787

    Article  CAS  Google Scholar 

  • Kumar R, Chaurasiya PC, Singh RN, Singh S (2018) A review report: low temperature stress for crop production. Int J Pure App Biosci 6(2):575–598

    Article  CAS  Google Scholar 

  • Kurepin LV, Ivanov A, Zaman M, Pharis RP, Hurry V, Hüner NP (2017) Interaction of glycine betaine and plant hormones: protection of the photosynthetic apparatus during abiotic stress. Springer International Publishing, Cham, pp 185–202

    Google Scholar 

  • Kuwagata T, Hamasaki T, Watanabe T (2008) Modeling water temperature in a rice paddy for agro-environmental research. Agri Forest Meteorol 148(11):1754–1766

    Article  Google Scholar 

  • Lämke J, Brzezinka K, Altmann S, Bäurle I (2016) A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J 35:162–175

    Article  PubMed  CAS  Google Scholar 

  • Langis R, Steponkus P (1990) Cryopreservation of rye protoplasts by vitrification. Plant Physiol 92:666–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larcher W (2004) Ecofisiologia vegetal. RiMa, São Carlos

    Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawlor DW (2001) Photosynthesis, 3rd edn. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Leakey ADB, Ferguson JN, Pignon CP, Wu A, Jin Z, Hammer GL, Lobel DB (2019) Water use efficiency as a constraint and target for improving the resilience and productivity of C3 and C4 crops. Ann Rev Plant Biol 70:781–808

    Article  CAS  Google Scholar 

  • Lee HG, Seo PJ (2015) The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis. Plant J 82:962–977

    Article  CAS  PubMed  Google Scholar 

  • Lee TM, Lur HS, Chu C (1993) Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. Endogenous abscisic acid levels. Plant Cell Environ 16:481–490

    Article  CAS  Google Scholar 

  • Lee, H., Guo, Y., Ohta, M., Xiong, L., Stevenson, B. and Zhu, J.K. 2002. LOS2, a genetic locus required for cold responsive transcription encodes a bi-functional enolase. EMBO J 21: 2692–2702

    Google Scholar 

  • Lee SH, Singh AP, Chung GC (2004a) Rapid accumulation of hydrogen peroxide in cucumber roots due to exposure to low temperature appears to mediate decreases in water transport. J Exp Bot 55:1733–1741

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Singh AP, Chung GC, Ahn SJ, Noh EK, Steudle E (2004b) Exposure of roots of cucumber (Cucumis sativus) to low temperature severely reduces root pressure, hydraulic conductivity and active transport of nutrients. Physiol Plant 120(3):413–420

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Ahn SJ, Im YJ, Cho K, Chung GH, Cho BH, Han O (2005a) Differential impact of low temperature on fatty acid unsaturation and lipoxygenase activity in figleaf gourd and cucumber roots. Biochem Biophys Res Comm 330:1194–1198

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Chung GC, Steudle E (2005b) Gating of aquaporins by low temperature in roots of chilling-sensitive cucumber and chilling tolerant figleaf gourd. J Exp Bot 56:985–995

    Article  CAS  PubMed  Google Scholar 

  • Leon P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116

    Article  CAS  PubMed  Google Scholar 

  • Leuendrof JE, Frank M, Schmülling T (2020) Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Sci Rep 10:689

    Article  CAS  Google Scholar 

  • Levitt J (1980) responses of plants to environmental stress, Chilling freezing, and high temperature stresses, vol 1, 2nd edn. Academic Press

    Google Scholar 

  • Leyva A, Jarillo JA, Salinas J, Martinez-Zapater JM (1995) Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiol 108:39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Sherman LA (2000) A redox-responsive regulator of photosynthesis gene expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 182:4268–4277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Xu H, Cohen S (2005a) Long-term hydraulic acclimation to soil texture and radiation load in cotton. Plant Cell Environ 28:492–499

    Article  Google Scholar 

  • Li XP, Tian AG, Luo GZ, Gong ZZ, Zhang JS, Chen SY (2005b) Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theo App Genet 110:1355–1362

    Article  CAS  Google Scholar 

  • Li BQ, Zhou ZW, Tian SP (2008) Combined effects of endo- and exogenous trehalose on stress tolerance and biocontrol efficacy of two antagonistic yeasts. Biol Control 46:187–193

    Article  CAS  Google Scholar 

  • Li DD, Wu YJ, Ruan XM, Li B, Zhu L, Wang H, Li XB (2009a) Expressions of three cotton genes encoding the PIP proteins are regulated in root development and in response to stresses. Plant Cell Rep 28:291–300

    Article  CAS  PubMed  Google Scholar 

  • Li DD, Tai FJ, Zhang ZT, Li Y, Zheng Y, Wu YF, Li XB (2009b) A cotton gene encodes a tonoplast aquaporin that is involved in cell tolerance to cold stress. Gene 438:26–32

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ye K, Shi Y, Cheng J, Yang S (2017) BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis. Mol Plant 10(4):545–559

    Article  CAS  PubMed  Google Scholar 

  • Liang WS (2003) Drought stress increases both cyanogenesis and beta-cyanoalanine synthase activity in tobacco. Plant Sci 165:1109–1115

    Article  CAS  Google Scholar 

  • Liang Z, Jiang R, Zhong W, Zhao G, Li A, Feng H, Li Z, Sui S (1996) Studies on the trispecific hybrid (Gossypium barbadense - G. thurberi - G. hirsutum) and new variety breeding. Acta Agron Sinica 22:673–680

    Google Scholar 

  • Lichtenthaler HK (2006) The stress concept in plants: an introduction. Ann N Y Acad Sci 851:187–198

    Article  Google Scholar 

  • Limin AE, Fowler DB (1985) Cold-hardiness of sequential winter wheat tissue segments to differing temperature regimes. Crop Sci 25(5):838–843

    Article  Google Scholar 

  • Liu X, Huang B (2000) Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci 40(1):503–510

    Article  CAS  Google Scholar 

  • Liu YF, Qi MF, Li TL (2012) Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Sci 196:8–17

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Guo S, Lian Z, Chen F, Yang Y, Chen T, Ling X, Liu A, Wang R, Zhang B (2015) A P4-ATPase gene GbPATP of cotton confers chilling tolerance in plants. Plant Cell Physiol. 56:549–557

    Article  CAS  PubMed  Google Scholar 

  • Livingston DP, Henson CA (1998) Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: responses to second-phase cold hardening. Plant Physiol 116:403–408

    Article  CAS  PubMed Central  Google Scholar 

  • Lopez-Delgado H, Dat JF, Foyer CH, Scott IM (1998) Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. J Exp Bot 49:713–720

    Article  CAS  Google Scholar 

  • López-Pérez L, Martínez-Ballesta MC, Maurel C, Carvajal M (2009) Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanisms to salinity. Phytochemistry 70:492–500

    Article  PubMed  CAS  Google Scholar 

  • Lordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stress. J Integr Plant Biol 50(10):1223–1229

    Article  CAS  Google Scholar 

  • Lu S, Ren T, Gong Y, Horton R (2009) Am improved model for predicting soil thermal conductivity from water content at room temperature. Am J Soil Sci Soc 71(1):8–14

    Article  CAS  Google Scholar 

  • Lynch DV (1990) Chilling injury in plants: the relevance of membrane lipids. In: Katterman F (ed) Environmental injury to plants. Academic Press, New York, pp 17–34

    Chapter  Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Annu Rev Plant Physiol 24:445–466

    Article  CAS  Google Scholar 

  • Maggio A, Joly RJ (1995) Effects of mercury-chloride on the hydraulic conductivity of tomato root systems. Evidence for a channel mediated water pathway. Plant Physiol 109:331–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Mahdieh M, Mostajeran A (2009) Abscisic acid regulates root hydraulic conductance via aquaporin expression modulation in Nicotiana tabacum. J Plant Physiol 166:1993–2003

    Article  CAS  PubMed  Google Scholar 

  • Mahmood, R. 2002. In vitro effect of salt on the vigor of potato (Solanum tuberosum L.) plantlets. Int J Biotechnol 1: 73–77

    Google Scholar 

  • Mai J, Herbette S, Vandame M, Kositsup B, Kasemsap P, Eric C, Julien JL, Améglio T, Roeckel-Drevet P (2009) Effect of chilling on photosynthesis and antioxidant enzymes in Hevea brasiliensis Muell. Arg Trees 23(4):863–874

    Article  CAS  Google Scholar 

  • Malone M (1993) Rapid inhibition of leaf growth by root cooling in wheat: kinetics and mechanism. J Environ Exp Bot 44(268):1663–1669

    Article  Google Scholar 

  • Mano J (2002) Early events in environmental stresses in plants - induction mechanisms of oxidative stress. In: Inzé D, van Montagu M (eds) Oxidative stress in plants. Taylor Francis, London, pp 217–245

    Google Scholar 

  • Markhart AH, Fiscuc EL, Naylor AW, Kramer PJ (1979) Effect of temperature on water and ion transport in soybean and broccoli systems. Plant Physiol 64(1):83–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, New York

    Google Scholar 

  • Martias AD, Musil S (2012) Temperature and thermal diffusivity within a range of land soil near Oragle, Arizona. J Arizona-Nevada Acad Sci 44(1):15–21

    Article  Google Scholar 

  • Martin JH (1927) Comparative studies of winter hardiness in wheat. J Agric Res 35:493–535

    Google Scholar 

  • Matsumoto T, Lian HL, Su WA, Tanaka D, Liu CW, Iwasaki I, Kitagawa Y (2009) Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice. Plant and Cell Physiol 50:216–229

    Article  CAS  Google Scholar 

  • Matsuo N, Ozawa K, Mochizuki T (2009) Genotypic differences in root hydraulic conductance of rice (Oryza sativa L.) in response to water regimes. Plant Soil 316:25–34

    Article  CAS  Google Scholar 

  • Matsuoka M, Furbank RT, Fukayama H, Miao M (2001) Molecular engineering of C4. Ann Rev Plant Physiol Plant Mol Biol 52:297–314

    Article  CAS  Google Scholar 

  • Matsushima S, Tanaka T, Hoshino T (1964) Analysis of yield determining process and its application to yield-prediction and culture improvement of lowland rice. LXXI. Combined effects of air-temperatures and water-temperatures at different stage of growth on the growth and morphological characteristics of rice plants. Proc Crop Sci Soc Jpn 33:135–140

    Article  Google Scholar 

  • Matzner S, Comstock J (2001) The temperature dependence of shoot hydraulic resistance implications for stomatal behaviour and hydraulic limitation. Plant Cell Environ 24:1299–1307

    Article  Google Scholar 

  • Maurel C, Reizer J, Schroeder JI, Chrispeels MJ (1993) The vacuolar membrane protein gamma-TIP creates water-specific channels in Xenopus oocytes. EMBO J 12:2241–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurel C, Kado RT, Guern J, Chrispeels MJ (1995) Phosphorylation regulates the water channel activity of the seed specific aquaporin alpha-TIP. EMBO J 14:3028–3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Ann Rev Plant Biol 59:595–624

    Article  CAS  Google Scholar 

  • McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Ann Rev Plant Physiol Plant Mol Biol 50:695–718

    Article  CAS  Google Scholar 

  • McElrone AJ, Choat B, Gambetta GA, Brodersen CR (2013) Water uptake and transport in vascular plants. Nat Educ Knowl 4(5):6

    Google Scholar 

  • Mckersie BD, Bowley SR (1997) Active oxygen and freezing tolerance in transgenic plants. In: Li PH, Chen THH (eds) Plant cold hardiness, molecular biology, biochemistry and physiology. Plenum Press, New York, pp 203–214

    Google Scholar 

  • McKhann H, Gery C, Berard A, Leveque S, Zuther E, Hincha D, DeMita S, Brunel D, Teoule E (2008) Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. BMC Plant Biol 8:105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McMichael BC, Burke JJ (1998) Soil temperature and root growth. Hort Sci 33(6):947–951

    Google Scholar 

  • McWilliam JR, Kramer PJ, Musser RL (1982) Temperature-induced water stress in chilling-sensitive plants. Aust J Plant Physiol 9:343–352

    Google Scholar 

  • Mendgen K (1996) Fungal attachment and penetration. In: Kerstiens G (ed) Plant cuticles: an integrated functional approach. Bios Scientific Publishers, Lancaster, pp 175–188

    Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Mercado JA, Reid MS, Valpuesta V, Quesada MA (1997) Metabolic changes and susceptibility to chilling stress in Capsicum annuum plants grown at suboptimal temperature. Aust J Plant Physiol 24:759–767

    CAS  Google Scholar 

  • Miki Y, Takahashi D, Kawamura Y, Uemura M (2019) Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation. J Proteome 197:71–81

    Article  CAS  Google Scholar 

  • Mikić A, Čupina B, Rubiales D, Mihailović V, Šarūnaité L, Fustec J, Antanasović S, Krstić Đ, Bedoussac L, Zorić L, Đordević V, Perić V, Srebrić M (2015) Models, developments, and perspectives of mutual legume intercropping. Adv Agron 130:337–419

    Article  Google Scholar 

  • Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14(3):5312–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I (2006) Boron induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple root-stock EM9 (Malus domestica Borkh). Environ Exp Bot 56:54–62

    Article  CAS  Google Scholar 

  • Molinari, H.B.C., Marur, C.J., Bespalhok Filho, J.C., Kobayashi, A.K., Pileggi, M., Leite Jr, R.P., Pereira, L.F.P. and Vieira, L.G.E. 2004. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb x Poncirus trifoliata L. Raf) overproducing proline. Plant Sci 167: 1375–1381

    Google Scholar 

  • Moon BY, Higashi S, Gombos Z, Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci U S A 92:6219–6223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan PW (1990) Effects of abiotic stresses on plant hormone systems. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss Inc., New York, NY, pp 113–146

    Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 155:1558–1566

    Article  Google Scholar 

  • Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57

    Article  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. Tansley review. New Phytol 167:645–656

    Article  CAS  PubMed  Google Scholar 

  • Murai-Hatano M, Kuwagata T, Sakurai J, Nonami H, Ahmed A, Nagasuga K, Matsunami T, Fukushi K, Maeshima M, Okada M (2008) Effect of low root temperature on hydraulic conductivity of rice plants and the possible role of aquaporins. Plant Cell Physiol 49:1294–1305

    Article  CAS  PubMed  Google Scholar 

  • Murphy C, Wilson JM (1981) Ultrastructural features of chilling injury in Episcia reptans. Plant Cell Environ 4:261–265

    Google Scholar 

  • Nagasuga K, Murai-Hatano M, Kuwagata T (2011) Effects of low root temperature on dry matter production and root water uptake in rice plants. Plant Prod Sci 14(1):22–29

    Article  Google Scholar 

  • Nagel OW, Konings H, Lambers H (1994) Growth-rate, plant development and water relations of the ABA-deficient tomato mutant sitiens. Physiol Plant 92:102–108

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Majumder RR (2009a) Effect of low temperature stress in transplanted Aman Rice varieties mediated by different transplanting dates. Acad J Pl Sci 2:132–138

    Google Scholar 

  • Nahar K, Biswas JK, Shamsuzzaman AMM, Hasanuzzaman M, Barman HN (2009b) Screening of indica rice (Oryza sativa L.) genotypes against low temperature stress. Bot Res Int 2:295–303

    Google Scholar 

  • Nahar K, Biswas JK, Shamsuzzaman AMM (2012) Cold stress tolerance in rice plant: screening of genotypes based on morphophysiological traits. Lambert Academic Publishing, Saarbrücken, Germany

    Google Scholar 

  • Nardini A, Pitt F (1999) Drought resistance of Quercus pubescens as a function of root hydraulic conductance, xylem embolism and hydraulic architecture. New Phytol 143:485–493

    Article  PubMed  Google Scholar 

  • Nass HG (1983) Relationship of plant water content and winter hardiness of winter wheat and fall rye grown in Atlantic Canada. Can J Plant Sci 63(1):67–71

    Article  Google Scholar 

  • Naydenova G, Hristova T, Aleksiev Y (2013) Objectives and approaches in the breeding of perennial legumes for use in temporary pasture lands. Biotechnol Anim Husb 29(2):233–250

    Article  Google Scholar 

  • Nayyar H, Chander K, Kumar S, Bains T (2005) Glycine betaine mitigates cold stress damage in chickpea. Agron Sustain Dev 25:381–388

    Article  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  PubMed  Google Scholar 

  • Nievola CC, Carvalho CP, Carvalho V, Rodrigues E (2017) Rapid responses of plants to temperature changes. Temperature (Austin) 4(4):371–405

    Article  Google Scholar 

  • Nihsida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membranes lipids. Ann Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  CAS  PubMed  Google Scholar 

  • Nobel PS (2009) Physicochemical and environmental plant physiology, 4th edn. Elsevier, Academic Press, London

    Google Scholar 

  • Nwankwo C, Ogugurue D (2012) An investigation of temperature variation at soil depth in peanuts of southern Nigeria. Am J Environ Eng 2(5):142–147

    Article  Google Scholar 

  • Ogbonnaya CI, Nwalozie MC, Roy-Macauley H, Annerose DJM (1998) Growth and water relations of Kenaf (Hibiscus cannabinus L.) under water deficit on a sandy soil. Indus Crops Products 8:65–76

    Article  Google Scholar 

  • Olien CR, Smith MN (1977) Ice adhesions in relation to freeze stress. Plant Physiol 60(4):499–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira G, Peñuelas J (2004) Effects of winter cold stress on photosynthesis and photochemical efficiency of PSII of the Mediterranean Cistus albidus L. and Quercus ilex L. Plant Ecol 175:179–191

    Article  Google Scholar 

  • Olivella C, Biel C, Vendrell M, Savé R (2000) Hormonal and physiological responses of Gerbera jamesonii to flooding stress. HortScience 35:222–225

    Article  CAS  Google Scholar 

  • Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Onwuka BM (2018) Effects of soil temperature on some soil properties and plant growth. Adv Plant Agric Res 8(1):34–37

    Google Scholar 

  • Ort DR (2001) When there is too much light. Plant Physiol 125:29–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orvar BL, Sangwan V, Omann F, Dhindsra RS (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23:785–794

    Article  CAS  PubMed  Google Scholar 

  • Osborne CP, Sack L (2012) Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Philoso. Transac Royal Soc B: Biol Sci 367:583–600

    Article  CAS  Google Scholar 

  • Owston PW, Smith JL, Halverson HG (1972) Seasonal water movement in tree stems. For Res 18(4):267–272

    Google Scholar 

  • Palta JP (2000) Stress interactions at the cellular and membrane levels. Hort Sci 25(11):1377

    Google Scholar 

  • Pan A, Hayes PM, Chen F, Chen THH, Blake T, Wright S, Karsai I, Beds Z (1994) Genetic analysis of the components of winter hardiness in barley (Hordeum vulgare L.). Theo Appl Genet 89:900–910

    Article  CAS  Google Scholar 

  • Pan J, Zhang M, Kong X, Xing X, Liu Y, Zhou Y, Liu Y, Sun L, Li D (2012) ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses. Planta 235(4):661–676

    Article  CAS  PubMed  Google Scholar 

  • Park W, Scheffler BE, Bauer PJ, Campbell BT (2010) Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol 10:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park S, Lee CM, Deherty CJ, Kim Y, Thomashow MF (2015) Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J 82(2):193–207

    Article  CAS  PubMed  Google Scholar 

  • Park S, Gilmour SJ, Grumet R, Thomashow MF (2018) CBF-dependent and CBF-independent regulatory pathways contribute to the differences in freezing tolerance and cold-regulated gene expression of two Arabidopsis ecotypes locally adapted to sites in Sweden and Italy. PLoS One 13:e0207723

    Article  PubMed  PubMed Central  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of ‘redox’ and abscisic acid-mediated controls. Plant Physiol 129:460–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce RS (1999) Molecular analysis of acclimation to cold. Plant Grow Regul 29:47–76

    Article  CAS  Google Scholar 

  • Pego JV, Kortstee AJ, Huijser C, Smeekens SCM (2000) Photosynthesis, sugars and the regulation of gene expression. J Exp Bot 51:407–416

    Article  CAS  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Tang Q, Zou Y (2009) Current status and challenges of rice production in China. Plant Prod Sci 12(1):3–8

    Article  Google Scholar 

  • Pennisi E (2008) The blue revolution, drop by drop, gene by gene. Science 320:171–173

    Article  CAS  PubMed  Google Scholar 

  • Perämäki M, Nikinmaa E, Sevanto S, Ilvesniemi H, Siivola E, Hari P, Vesala T (2001) Tree stem diameter variations and transpiration in scots pine: an analysis using a dynamic sap flow model. Tree Physiol 21(12–13):889–897

    Article  PubMed  Google Scholar 

  • Pereira JS, Chaves MM (1993) Plant water deficits in Mediterranean ecosystems. In: Smith JAC, Griffiths H (eds) Plant responses to water deficits—from cell to community. Bios Scientific Publishers, Oxford, pp 237–248

    Google Scholar 

  • Pereira JS, Chaves MM (1995) Plant responses to drought under climate change in Mediterranean-type ecosystems. In: Moreno JM, Oechel WC (eds) Global change and mediterranean-type ecosystems. Springer-Verlag, Berlin, Heidelberg, New York, pp 140–160

    Chapter  Google Scholar 

  • Pereira JS, Chaves MM, Cladeira MC, Correia AV (2006) Water availability and productivity. In: Morison J, Croft M (eds) Plant growth and climate change. Blackwell Publishers, London, pp 118–145

    Chapter  Google Scholar 

  • Perez-Perez JG, Robles JM, Tovar JC, Botia P (2009) Response to drought and salt stress of lemon ‘Fino 49’ under field conditions: water relations, osmotic adjustment and gas exchange. Sci Hortic 122:83–90

    Article  Google Scholar 

  • Perl-Treves R, Perl A (2002) Oxidative stress: An introduction. In: Inzé D, van Montagu M (eds) Oxidative stress in plants. Taylor Francis, London, pp 1–32

    Google Scholar 

  • Phadtare S, Alsina J, Inouye M (1999) Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2(2):175–180

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro C, Chaves MM, Ricardo CP (2001) Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus L. J Exp Bot 52:1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Poffenroth M, Green DB, Tallman G (1992) Sugar concentrations in guard cells of Vicia faba illuminated with red or blue light. Plant Physiol 98:1460–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porcel R, Bustamante A, Ros R, Serrano R, Mulet JM (2018) BvCOLD1: a novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. Plant Cell Environ 2018:1–14

    Google Scholar 

  • Postaire O, Tournaire-Roux C, Grondin A, Boursiac Y, Morillon R, Shäffner AR, Maurel C (2010) A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. Plant Physiol 152:1418–1430

    Article  CAS  PubMed  Google Scholar 

  • Pradel E, Pieri P (2000) Influence of glass layer in vineyard and soil temperature. Aust J Grape Wine Res 6(1):59–67

    Article  Google Scholar 

  • Puhe J (2003) Growth and development of the root system of Norway spruce (Picea abies) in forest stands-a review. For Ecol Manag 175(1–3):253–273

    Article  Google Scholar 

  • Qaderi MM, Islam MA, Reid DM, Shah S (2007) Do low-ethylene-producing transgenic canola (Brassica napus) plants expressing the ACC deaminase gene differ from wild-type plants in response to UVB radiation? Can J Bot 85:148–159

    Article  CAS  Google Scholar 

  • Quinet M, Ndayiragije A, Lefevre I, Lambillotte B, Dupont-Gillain CC, Lutts S (2010) Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. J Exp Bot 61:2719–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramalho JC, Quartin V, Fahl JI, Carelli ML, Leitão AE, Nunes MA (2003) Cold acclimation ability of photosynthesis among species of the tropical Coffea genus. Plant Biol 5:631–641

    Article  CAS  Google Scholar 

  • Rao RCN, Udaykumar M, Farquhar GD, Talwar HS, Prasad TG (1995) Variation in carbon isotope discrimination and its relationship to specific leaf weight and Ribose-1,s-bisphosphate carboxylase content in groundnut genotypes. Aust J Plant Physiol 22:545–551

    CAS  Google Scholar 

  • Rebetzke GJ, Richards RA (1999) Genetic improvement of early vigour in wheat. Aust J Agric Res 50:291–301

    Article  Google Scholar 

  • Rejeb KB, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284

    Article  PubMed  CAS  Google Scholar 

  • Renny-Byfield S, Page JT, Udall JA, Sanders WS, Peterson DG, Arick MAII, Grover CE, Wendel JF (2016) Independent domestication of two old world cotton species. Genome Biol Evol 8:1940–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Repo TI, Leinonen AR, Finer L (2004) Effect of soil temperature on bid phenology, chlorophyll fluorescence, carbohydrate content and cold hardiness of Norway spruce seedlings. Physiol Plant 121(1):93–100

    Article  CAS  PubMed  Google Scholar 

  • Rhee JY, Lee SH, Singh AP, Chung GC, Ahn SJ (2007) Detoxification of hydrogen peroxide maintains the water transport activity in figleaf gourd (Cucurbita ficifolia) root system exposed to low temperature. Physiol Plant 130:177–184

    Article  CAS  Google Scholar 

  • Richards RA, Luckacs Z (2002) Seedling vigour in wheat-sources for variation for genetic and agronomic improvement. Aust J Agric Res 42:111–121

    Google Scholar 

  • Richter H (2001) The cohesion theory debate continues: the pitfalls of cryobiology. Trends Plant Sci 6(10):456–457

    Article  CAS  PubMed  Google Scholar 

  • Rihan HZ, Al-Issawi M, Fuller MP (2017) Advances in physiological and molecular aspects of plant cold tolerance. J Plant Interact 12(1):143–157

    Article  CAS  Google Scholar 

  • Rivero RM, Ruiz JM, García PC, López-Lefebre LR, Sánchez E, Romero L (2002) Response of oxidative metabolism in watermelon plants subjected to cold stress. Funct Plant Biol 29(5):643

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Gamir J, Ancillo G, González-Mas MC, Primo-Millo E, Iglesias DJ, Forner-Giner MA (2011) Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiol Biochem 49:636–645

    Article  PubMed  CAS  Google Scholar 

  • Routaboul J-M, Fischer S, Browse J (2000) Trienoic fatty acids are required to maintain chloroplast function at low temperature. Plant Physiol 124:1697–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69(3):225–232

    Article  Google Scholar 

  • Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Alguacil MM, Bárzana G, Vernieri P, Aroca R (2009) Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Mol Biol 70:565–579

    Article  CAS  PubMed  Google Scholar 

  • Sachs J (1875) Geschichte Der Botanik Vom 16. Jahrhundert Bis 1860. Oldenbourg, München

    Book  Google Scholar 

  • Sack L, Holbrook NM (2006) Leaf hydraulics. Ann Rev Plant Biol 57:361–381

    Article  CAS  Google Scholar 

  • Sack L, Tyree MT (2005) Leaf hydraulics and its implications in plant structure and function. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Elsevier, Academic Press, San Diego, CA, pp 93–114

    Chapter  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Ecol Stud 62:157–165

    Google Scholar 

  • Sales CRG, Ribeiro RV, Silveira JAG, Machado EC, Martins MO, Lagôa AMMA (2013) Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature. Plant Physiol Biochem 73:326–336

    Article  CAS  PubMed  Google Scholar 

  • Salinas J (2002) Molecular mechanisms of signal transduction in cold acclimation. In: Scheel D, Wasternack C (eds) Plant signal transduction. Oxford University Press, London, pp 116–139

    Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satake T (1976) Sterility-type cool injury to rice plants in Japan. In: Takahashi K, Yoshino M (eds) Climatic change and food production. Tokyo University, Tokyo, Japan, pp 246–254

    Google Scholar 

  • Sato K (1972) Growth responses of rice plant to environmental conditions. I. the effects of air-temperatures on the growth at vegetative stage. Proc Crop Sci Soc Jpn 41:388–393

    Article  Google Scholar 

  • Sauter A, Dietz KJ, Hartung W (2002) A possible tress physiological role of abscisic acid conjugates in root-to-shoot signalling. Plant Cell Environ 25(2):223–228

    Article  CAS  PubMed  Google Scholar 

  • Scholz FG, Bucci SJ, Arias N, Meinzer FC, Goldstein G (2012) Osmotic and elastic adjustments in cold desert shrubs differing in rooting depth: coping with drought and subzero temperatures. Oecologia 170:885–897

    Article  PubMed  Google Scholar 

  • Schoppach R, Sadok W (2012) Differential sensitivities of transpiration to evaporative demand and soil water deficit among wheat elite cultivars indicate different strategies for drought tolerance. Environ Exp Bot 84:1–10

    Article  Google Scholar 

  • Schulz E, Tohge T, Zuther E, Fernie AR, Hincha DK (2015) Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions. Plant Cell Environ 38:1658–1672

    Article  CAS  PubMed  Google Scholar 

  • Schulz E, Tohge T, Zuther E, Fernie AR, Hincha DK (2016) Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci Rep, 6: e34027

    Google Scholar 

  • Schwarz P, Fahey T, Dawson T (1997) Seasonal air and soil temperature effects on photosynthesis in red spruce (Picea rubens) saplings. Tree Physiol 17(3):187–194

    Article  CAS  PubMed  Google Scholar 

  • Schwender J, Ohlrogge J, Shachar-Hill Y (2004) Understanding flux in plant metabolic networks. Curr Opin Plant Biol 7:309–317

    Article  CAS  PubMed  Google Scholar 

  • Scott P (2008) Physiology and behaviour. John Wiley and Sons, New York, p 305

    Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  • Sevanto S, Vesala T, Perämäki M, Nikinmaa E (2001) Xylem diameter changes as an indicator of stand-level evapotranspiration. Boreal Environ Res 6(1):45–52

    Google Scholar 

  • Sevanto S, Suni T, Pumpanen J, Grönholm T, Kolari P, Nikinmaa E, Hari P, Vesala T (2006a) Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiol 26(6):749–757

    Article  PubMed  Google Scholar 

  • Sevanto S, Suni T, Pumpanen J, Grönholm T, Kolari P, Nikinmaa E, Hari P, Vesala T (2006b) Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiol 26(6):749–757

    Article  PubMed  Google Scholar 

  • Sewelam N, Oshima Y, Mitsuda N, Ohme-Takagi M (2014) A step towards understanding plant responses to multiple environmental stresses: a genome-wide study. Plant Cell Environ 37:2024–2035

    Article  CAS  PubMed  Google Scholar 

  • Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Chen XY, Chu LY, Zhao XN, Wu GY, Yong B (2006) Investigation on the relationship of proline with wheat anti drought under soil water deficits. Colloids Surf B Bio Interfaces 53:113–119

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low-temperature response in plants. BioEssays 27:1048–1059

    Article  CAS  PubMed  Google Scholar 

  • Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ. 25:211–222

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Yang S (2014) In: Zhang D-P (ed) Abscisic acid: metabolism, transport and signaling. Springer, Netherland, pp 337–363

    Google Scholar 

  • Shi Y, Ding Y, Yang S (2018) Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci 23(7):623–637

    Article  CAS  PubMed  Google Scholar 

  • Shimazaki Y, Satake T, Watanabe K (1963) Studies on the growth and nutrient absorption of the rice plant reared with cool water irrigation during its early growth stage. Res Bull Hokkaido Natl Agric Exp Stn 80:1–12

    Google Scholar 

  • Shimono H, Hasegawa T, Iwama K (2002) Response of growth and grain yield in paddy rice to cool water at different growth stages. Field Crops Res 73(1):67–79

    Article  Google Scholar 

  • Shimono H, Hasegawa T, Fujimura S, Iwama K (2004) Responses of leaf photosynthesis and plant water status to low water temperature at different growth stages. Field Crops Res 89(1):71–83

    Article  Google Scholar 

  • Shimono H, Hasegawa T, Iwama K (2007a) Modeling the effects of water temperature on rice growth and yield under a cool climate. I Model development. Agron J 99(5):1327–1337

    Article  Google Scholar 

  • Shimono H, Hasegawa T, Kuwagata T, Iwama K (2007b) Modeling the effects of water temperature on rice growth and yield under a cool climate II. Model application. Agron J 99(5):1338–1344

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Uemura M, Bailey-Serres J, Bray EA, Weretilnyk E (2015) Responses to abiotic stress. In: Buchanan BB, Gruissem W, Vickers K, Jones RL (eds) Biochemistry and molecular biology of plants. John Wiley & Sons, Hoboken

    Google Scholar 

  • Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002) PIP1 plasma membrane aquaporin in tobacco: from cellular effects to function in plants. Plant Cell 14:869–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siemens JA, Zwiazek JJ (2003) Effects of water deficit stress and recovery on the root water relations of trembling aspen (Populus tremuloides) seedlings. Plant Sci 165:113–120

    Article  CAS  Google Scholar 

  • Simonneau T, Barrieu P, Tardieu F (1998) Accumulation rate of ABA in detached maize roots correlates with root water potential regardless of age and branching order. Plant Cell Environ 21:1113–1122

    Article  CAS  Google Scholar 

  • Sinclair TR (2012) Is transpiration efficiency a viable plant trait in breeding for crop improvement? Funct Plant Biol 39:359–365

    Article  PubMed  Google Scholar 

  • Sinclair TR, Hammer GL, van Oosterom EJ (2005) Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Funct Plant Biol 32:945–952

    Article  PubMed  Google Scholar 

  • Singh DK, Sale PWG (2000) Growth and potential conductivity of white clover roots in dry soil with increasing phosphorous supply and defoliation frequency. Agron J 92:868–874

    Article  Google Scholar 

  • Sinha SK, Agarwal PK, Khanna-Chopra R (1985) Irrigation in India: a physiological and phonological approach to water management in grain crops. In: Hillel D (ed) Advances in irrigation science. Academic Press, New York, pp 130–212

    Google Scholar 

  • Siow LF, Rades T, Lim MH (2007) Characterizing the freezing behavior of liposomes as a tool to understand the cryopreservation procedures. Cryobiology 55:210–221

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar P, Sharmila P, Saradhi PP (2000) Proline alleviates salt-stress induced enhancement in rubisco oxygenase activity. Biochem Biophys Res Commun 279(1):512–515

    Article  CAS  PubMed  Google Scholar 

  • Smith AW (1989) Introduction. In: Clarke RJ, Macrae R (eds) Coffee, Volume 1: Chemistry. Elsevier, London, pp 1–41

    Google Scholar 

  • Smith BN, Jones AR, Hanson LD, Criddle RS (1999) Growth, respiration rate, and efficiency response to temperature. In: Handbook of plant and crop stress, 2nd edn. Marcel Dekker, New York, pp 417–440

    Google Scholar 

  • Solanke AU, Sharma AK (2008) Signal transduction during cold stress in plants. Physiol Mol Biol Plants 14(1–2):69–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solecka D, Zebrowski J, Kacperska A (2008) Are pectins involved in cold acclimation and de-acclimation of winter oil-seed rape plants? Ann Bot (Lond) 101:521–530

    Article  CAS  Google Scholar 

  • Somerville C (1995) Direct tests of the role of membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanobacteria. Proc Natl Acad Sci U S A 92:6215–6218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song L, Ding W, Shen J, Zhang Z, Bi Y, Zhang L (2008) Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress. Plant Sci 175:826–832

    Article  CAS  Google Scholar 

  • Song G, Wang M, Zeng B, Zhang J, Jiang C, Hu Q, Geng G, Tang C (2015) Anther response to high-temperature stress during development and pollen thermotolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton. Planta 241(5):1271–1285

    Article  CAS  PubMed  Google Scholar 

  • Songstad DD, Duncan DR, Widholm JM (1990) Proline and polyamine involvement in chilling tolerance of maize suspension cultures. J Exp Bot 41:289–294

    Article  CAS  Google Scholar 

  • Srivalli B, Khanna-Chopra R (2004) The developing reproductive ‘sink’ induces oxidative stress to mediate nitrogen mobilization during monocarpic senescence in wheat. Biochem Biophys Res Commun 325:198–202

    Article  CAS  PubMed  Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Ann Rev Plant Physiol 35:543–584

    Article  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Webb MS (1993) A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Steponkus PL (ed) Advances in low-temperature biology, vol 2. JAI Press, London, pp 211–312

    Google Scholar 

  • Steponkus PL, Uemura, M, Joseph, RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Nat Acad Sci U S A, 95: 14570–14575

    Google Scholar 

  • Steudle E (2000) Water uptake by plant roots: an integration of views. Plant Soil 226:45–56

    Article  CAS  Google Scholar 

  • Steudle E (2001) The cohesion-tension mechanism and the acquisition of water by plant roots. Ann Rev Plant Physiol Plant Mol Biol 52:847–875

    Article  CAS  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get though roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Stitt M, Hurry V (2002) A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol 5(3):199–206

    Article  CAS  PubMed  Google Scholar 

  • Strauss G, Hauser H (1986) Stabilization of lipid bilayer vesicles by sucrose during freezing. Proc Natl Acad Sci U S A 83(8):2422–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strimbeck GR, Schaberg PG, Fossdal CG, Schröder WP, Kjellsen TD (2015) Extreme low temperature tolerance in woody plants. Front Plant Sci 19:884

    Google Scholar 

  • Stushnoff C, Flower DB, Brule-Babel A (1984) Breeding and selection for resistance to low-temperature. In: Vose PB (ed) Plant breeding—a contemporary basis. Elsevier, pp 115–136

    Chapter  Google Scholar 

  • Subbarao GV, Johansen C (2002) Transpiration efficiency: avenues for genetic improvement. In: Pessarakdi M (ed) Handbook for crop and plant physiology. Marcel Dekker Inc., New York, pp 835–855

    Google Scholar 

  • Subbarao GV, Nam NH, Chauhan YS, Johansen C (2000) Osmotic adjustment, water relations and carbohydrate remobilization in pigeon pea under water deficits. J Plant Physiol 157:651–659

    Article  CAS  Google Scholar 

  • Sun Q, Wang Y, Hou X (2004) Alfalfa winter survival research summary. Pratacultural Sci 21:21–25

    CAS  Google Scholar 

  • Sundaramurthi P, Patapoff TW, Suryanarayanan R (2010) Crystallization of trehalose in frozen solutions and its phase behavior during drying. Pharma Res 27:2374–2383

    Article  CAS  Google Scholar 

  • Szalai G, Tari I, Janda T, Pestenacz A, Paldi E (2000) Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biol Plant 43:637–640

    Article  CAS  Google Scholar 

  • Tada N, Sato M, Yamanoi J, Mizorogi T, Kasai K, Ogawa S (1990) Cryopreservation of mouse spermatozoa in the presence of raffinose and glycerol. J Reprod Fertil 89:511–516

    Article  CAS  PubMed  Google Scholar 

  • Tahir MA, Aziz T, Rahmatullah. (2011) Silicon induced growth and yield enhancement in two wheat genotypes differing in salinity tolerance. Commun Soil Sci Plant Anal 42:395–407

    Article  CAS  Google Scholar 

  • Táibi K, Del Campo AD, Vilagrosa A, Ballésa JM, López-Gresa MP, López-Nicolás JM, Mulet JM (2018) Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources. BMC Plant Biol 18:236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taiz L, Zeiger E (2015) Plant physiology and development, 6th edn. Sinauer Associates, Inc.

    Google Scholar 

  • Takahashi D, Li B, Nakayama T, Kawamura Y, Uemura M (2013) Plant plasma membrane proteomics for improving cold tolerance. Front Plant Sci 4:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Takamura Y, Takeuchi S, Hasegawa H (1960) Studies on the effects of soil temperature upon the growth of crop plants. III. Soil temperature and leaf emergence of rice plant. VIII. Relation of temperature of several parts of rice plant to the rate of leaf emergence. Proc Crop Sci Soc Jpn 29:195–198

    Article  Google Scholar 

  • Takeoka Y, Mamun AA, Wada T, Kaufman BP (1992) Reproductive adaptation of rice to environmental stress. Elsevier Science Publisher, Amsterdam, The Netherland. pp. 8.10

    Google Scholar 

  • Tamhane RV, Motiramani DP, Bali YP, Donahue RL (1970) Soils: their chemistry and fertility in tropical Asia. Prentice-Hall of India Pvt. Ltd., New Delhi, p 475

    Google Scholar 

  • Tanner CB, Sinclair TR (1983) Efficient water use in crop production: research or research? In: Taylor HM, Jordan WR, Sinclair TR (eds) Limitations to efficient water use in crop production. ASA, CSSA and SSSA, Madison. WI, pp 1–27

    Google Scholar 

  • Tarkowski ŁP, Van den Ende W (2015) Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. Front Plant Sci 6:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Tasgin E, Atici O, Nalbantoglu B (2003) Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul 41:231–236

    Article  CAS  Google Scholar 

  • Tetreault, H.M., Kawakami, T., Ungerer, M.C. and Levy, C. 2016. Low temperature tolerance in the perennial sunflower Helianthus maximiliani. Am Midland Nat, 175: 91–102

    Google Scholar 

  • Tewari RK, Kumar P, Tewari N, Srivastava S, Sharma PN (2004) Macronutrient deficiencies and differential antioxidant responses-influence on the activity and expression of superoxide dismutase in maize. Plant Sci 166:687–694

    Article  CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2006) Magnesium deficiency induced oxidative stress and anti-oxidant responses in mulberry plants. Sci Hortic 108:7–14

    Article  CAS  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67:429–443

    Article  CAS  Google Scholar 

  • Thalhammer A, Bryant G, Sulpice R, Hincha DK (2014) Disordered cold regulated15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in vivo. Plant Physiol 166(1):190–201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas H, James AR (1993) Freezing tolerance and solute changes in contrasting genotypes of Lolium perenne L. acclimated to cold and drought. Ann Bot 72:249–254

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (2001) So what’s new in the field of plant cold acclimation? Lots! Plant Physiol 125:89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson AJ, Andrews J, Mullholland BJ, McKee JMT, Hilton HW, Horridge JS, Farquhar GD, Smeeton RC, Smillie IRA, Black CR, Taylor IB (2007) Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol 143:1905–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tommasini L, Svensson JT, Rodriguez EM, Wahid A, Malatrasi M, Kato K, Wanamaker S, Rosnik J, Close TJ (2008) Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Funct Integr Genomics 8(4): 387–405

    Google Scholar 

  • Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694

    Article  PubMed  CAS  Google Scholar 

  • Toselli M, Flore JA, Maragoni B, Masia A (1999) Effect of root-zone temperature on nitrogen accumulation by non-breeding apple trees. J Hort Sci Biotech 74:118–124

    Article  Google Scholar 

  • Trouverie J, Thevenot C, Rocher J-P, Sotta B, Prioul J-L (2003) The role of abscisic acid in the response of a specific vacuolar invertase to water stress in the adult maize leaf. J Exp Bot 54(390):2177–2186

    Article  CAS  PubMed  Google Scholar 

  • Turhan E, Karni L, Aktas H, Deventurero G, Chang DC, Bar-Tal A, Aloni B (2006) Apoplastic antioxidants in pepper (Capsicum annuum L.) fruit and their relationship to blossom-end rot. J Hortic Sci Biotechnol 81:661–667

    Article  CAS  Google Scholar 

  • Turner NC, Jones MN (1980) Turgot maintenance by osmotic adjustment: a review and evaluation. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 84–104

    Google Scholar 

  • Tyree MT (2003) Plant hydraulics: the ascent of water. Nature 423(6943):923–923

    Article  CAS  PubMed  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, takabe, T. (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163(3):515–523

    Article  CAS  Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109(1):15–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadez V, Kholova J, Medina S, Kakkera A, Anderberg H (2014) Transpiration efficiency: new insights into an old story. J Exp Bot 65(21):6141–6153

    Article  CAS  PubMed  Google Scholar 

  • Valadabadi SA, Shiranirad AH, Farahani HA (2010) Ecophysiological influences of zeolite and selenium on water deficit stress tolerance in different rapeseed cultivars. J Ecol Nat Environ 2:154–159

    CAS  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  • van Buer, J., Cvetkovic, J. and Baier, M. 2016. Cold regulation of plastid ascorbate peroxidases serves as a priming hub controlling ROS signaling in Arabidopsis thaliana. BMC Plant Biol 16: 163

    Google Scholar 

  • van Buer J, Prescher A, Baier M (2019) Cold-priming of chloroplast ROS signalling is developmentally regulated and is locally controlled at the thylakoid membrane. Sci Rep 9:3022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verbruggen N, Villarroel R, van Montagu M (1993) Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol 103:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernieri P, Pardossi A, Tognoni F (1991) Influence of chilling and drought on water relations and abscisic acid accumulation in bean. Aust J Plant Physiol 18(1):25–35

    CAS  Google Scholar 

  • Vernieri P, Lenzi A, Figaro M, Tognoni F, Pardossi A (2001) How roots contribute to the ability of Phaseolus vulgaris L. to cope with chilling-induced water stress. J Exp Bot 52:2199–2206

    Article  CAS  PubMed  Google Scholar 

  • Veyres N, Aono M, Sangwan-Norreel BS, Sangwan RS (2008) The Arabidopsis sweetie mutant is affected in carbohydrate metabolism and defective in the control of growth, development and senescence. Plant J 55:665–686

    Article  CAS  PubMed  Google Scholar 

  • Volobueva OV, Velikanov GA, Baluska F (2004) Regulation of intercellular water exchange in various zones of maize root under stresses. Rus J Plant Physiol 51:676–683

    Article  CAS  Google Scholar 

  • Vogan PJ, Sage RF (2011) Water-use efficiency and nitrogen-use efficiency of C3–C4 intermediate species of Flaveria Juss. (Asteraceae). Plant Cell Environ 34:1415–1430

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109

    Article  CAS  Google Scholar 

  • Wallenstein M, Allison SD, Ermakovich J, Steinweg JM, Sinsabaugh RL (2010) Control of temperature sensitivity of soil enzymes, a key driver of in-situ enzyme rates. In: Shukla G, Verma A (eds) Soil enzymology-Chapter 13. Springer-Verlag, pp 245–258

    Chapter  Google Scholar 

  • Walters KR Jr, Serianni AS, Voituron Y, Sformo T, Barnes BM, Duman JG (2011) A thermal hysteresis-producing xylomannan glycolipid antifreeze associated with cold tolerance is found in diverse taxa. J Comp Physiol B 181:631–640

    Article  CAS  PubMed  Google Scholar 

  • Wan XC, Landhäusser SM, Zwiazek JJ, Lieffers VJ (1999) Root water flow and growth of aspen (Populus tremuloides) at low root temperatures. Tree Physiol 19:879–884

    Article  CAS  PubMed  Google Scholar 

  • Wan XC, Zwiazek JJ (2001) Root water flow and leaf stomatal conductance in aspen (Populus tremuloides) seedlings treated with abscisic acid. Planta 213:741–747

    Article  CAS  PubMed  Google Scholar 

  • Wan X, Zwiazek JJ, Lieffers VJ, Landhausser SM (2001) Hydraulic conductance in aspen (Populus tremuloides) seedlings exposed to low root temperature. Tree Physiol 21(10):691–696

    Article  CAS  PubMed  Google Scholar 

  • Wan XC (2010) Osmotic effects of NaCl on cell hydraulic conductivity of corn roots. Acta Biochim Biophys Sin 42:351–357

    Article  CAS  PubMed  Google Scholar 

  • Wang LJ, Li SH (2006) Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci 170:685–694

    Article  CAS  Google Scholar 

  • Wang Z, Wang J, Wang F, Bao Y, Wu Y, Zhang H (2009) Genetic control of germination ability under cold stress in rice. Rice Sci 16(3):173–180

    Article  Google Scholar 

  • Wang W, Chen Q, Hussain S, Mei J, Dong H, Peng S, Huang J, Cui K, Nie L (2016a) Pre-sowing seed treatments in direct-seeded early rice: consequences for emergence, seedling growth and associated metabolic events under chilling stress. Sci Rep 6:19637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Ding T, Zuo J, Gao L, Fan L (2016b) Amelioration of postharvest chilling injury in sweet pepper by glycine betaine. Postharvest Biol Technol 112:114–120

    Article  CAS  Google Scholar 

  • Wang CL, Zhang SC, Qi SD, Zheng CC, Wu CA (2016c) Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11. Gene 575:206–212

    Article  CAS  PubMed  Google Scholar 

  • Wang DZ, Jin YN, Ding XH, Wang WJ, Zhai SS, Bai LP, Guo ZF (2017) Gene regulation and signal transduction in the ICE-CBF-COR signaling pathway during cold stress in plants. Biochem Mosc 82:1103–1117

    Article  CAS  Google Scholar 

  • Waraich EA, Ahmad R, Ashraf MY, Saifullah, Ahmad M (2011) Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agric Scand Sect B: Plant Soil Sci 61(4):291–304

    CAS  Google Scholar 

  • Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nutr 12(2):221–244

    Article  Google Scholar 

  • Way DA, Katul GG, Manzoni S, Vico G (2014) Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective. J Exp Bot 65(13):3683–3693

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiser RL, Wallner SJ, Waddell JW (1990) Cell wall and extensin mRNA changes during cold acclimation of pea seedlings. Plant Physiol 93:1021–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson S, Clephan AL, Davies WJ (2001) Rapid low temperature induced stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold-sensitive tobacco-leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol 126(4):1566–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski M, Fuller M (1999) Ice nucleation and deep supercooling in plants: new insights using infrared thermography. In: Cold-adapted organisms: ecology, physiology, enzymology and molecular biology. Springer-Verlag, Berlin, pp 105–118

    Chapter  Google Scholar 

  • Wisniewski M, Gusta LV (2014) The biology of cold hardiness: adaptive strategies preface. Environ Exp Bot 106:1–3

    Article  Google Scholar 

  • Witt M, Barfield BJ (1982) Environmental stress and plant productivity. In: Rechcigl Jr (ed) Handbook of agricultural productivity. CRC Press, Boca Raton, FL, pp 347–374

    Google Scholar 

  • Wendehenne D, Pugin A, Klessig DF, Durner J (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6:177–183

    Article  CAS  PubMed  Google Scholar 

  • Woodward FI (2002) Potential impacts of global elevated CO2 concentrations on plants. Plant Biol 5:207–211

    CAS  Google Scholar 

  • Wu J, Li H, Niu J, Liu T, Zheng H, Xu X, Miao S (2020) Water uptake patterns of alfalfa under winter irrigation in cold and arid grassland. Water 12:1093

    Article  Google Scholar 

  • Wudick MM, Luu DT, Maurel C (2009) A look inside: localization patterns and functions of intracellular plant aquaporins. New Phytol 184:28–302

    Article  CAS  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Article  Google Scholar 

  • Xoconostle-Cázares B, Ramírez-Ortega FA, Flores-Elenes L, Ruiz-Medrano R (2010) Drought tolerance in crop plants. Am J Plant Physiol 5(5):241–256

    Article  Google Scholar 

  • Xu CC, Jeon YA, Lee C-H (1999) Relative contributions of photochemical and non-photochemical routes to excitation energy dissipation in rice and barley illuminated at a chilling temperature. Physiol Plant 107:447–453

    Article  CAS  Google Scholar 

  • Xu Q, Huang B (2000) Growth and physiological responses of creeping bentgrass to changes in air and soil temperatures. Crop Sci 40(5):1363–1368

    Article  Google Scholar 

  • Xu PL, Guo YK, Bai JG, Shang L, Wang XJ (2008) Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol Plant 132:467–478

    Article  CAS  PubMed  Google Scholar 

  • Xue T, Hartikainen H, Piironen V (2001) Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 237:55–61

    Article  CAS  Google Scholar 

  • Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2009) Cotton metallothionein GhMT3a, reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60:339–349

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sust Develop 30:515–527

    Article  CAS  Google Scholar 

  • Yan L, Hangwen X (2014) Effect of soil temperature, flooding and organic matter addition in N2O emission from a soil of Hongze lake wetland, China. Sci World J 2014:272684

    Google Scholar 

  • Yang JD, Yun JY, Zhang TH, Zhao HL (2006) Presoaking with nitric oxide donor SNP alleviates heat shock damages in mung bean leaf discs. Bot Stud 47:129–136

    CAS  Google Scholar 

  • Ye Q, Steudle E (2006) Oxidative gating of water channels (aquaporins) in corn roots plant. Cell Environ 29:459–470

    Article  CAS  Google Scholar 

  • Yildiz D, Nzokou P, Deligoz A, Koc I, Genc M (2014) Chemical and physiological responses of four Turkish red pine (Pinus brutia ten.) provenances to cold temperature treatments. Eur J Forest Res 133:809

    Article  CAS  Google Scholar 

  • Yokota A, Takahara K, Akashi K (2006) Water stress. In: Rao KVM, Raghavendra AS, Reddy KJ (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Netherlands, pp 15–39

    Chapter  Google Scholar 

  • Yu H, Liu H, Wang J (2015) Effects of cover and irrigation on winter surviving rate, soil temperature and soil moisture of algonquin alfalfa. Chin J Grassl 37:107–111

    Google Scholar 

  • Zaman-Allah M, Jenkinson DM, Vadez V (2011) Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Funct Plant Biol 38:270–281

    Article  PubMed  Google Scholar 

  • Zelazny E, Borst JW, Muylaert M, Batoko H, Hemminga MA, Chaumont F (2007) FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proc Nat Acad Sci U S A 104:12359–12364

    Article  CAS  Google Scholar 

  • Zhang J, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50:291–302

    Article  CAS  Google Scholar 

  • Zhang M, Duan L, Zhai Z, Li J, Tian X, Wang B, Zhong H, Zhao L (2004) Effects of plant growth regulators on water deficit-induced yield loss in soybean. In: Proceedings of the 4th International Crop Science Congress, Brisbane, QLD, pp. 575.

    Google Scholar 

  • Zhang YY, Wang LL, Liu YL, Zhang Q, Wei QP, Zhang WH (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na1/H1 anti-port in the tonoplast. Planta 224:545–555

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Liang C, Wang GP, Luo Y, Wang W (2010) The protection of wheat plasma membrane under cold stress by glycine betaine overproduction. Biol Plant 54(1):83–88

    Article  CAS  Google Scholar 

  • Zhang S, Jiang H, Peng S, Korpelainen H, Li C (2011) Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling. J Exp Bot 62(2):675–686

    Article  CAS  PubMed  Google Scholar 

  • Zhao YM, Xao Mong MA, Wang L (2007a) Variations of soil temperature and soil moisture in northern Tibet plateau. J Glaciol Geocryol 29(4):578–583

    Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007b) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Lang Z, Zhu JK (2015) Cold responsive gene transcription becomes more complex. Trends Plant Sci 20(8):466–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2001) Cell signalling under salt, water and cold stresses. Cur Opin Plant Biol 4:401–406

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Ann Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

  • Zhu X, Gong H, Chen G, Wang S, Zhang C (2005) Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages. J Arid Environ 62:1–14

    Article  Google Scholar 

  • Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295

    Article  CAS  PubMed  Google Scholar 

  • Ziegler P (1998) Environmental stress and stress responses plants. In: The co-action between living system and the planet. University of Geneva, Switzerland, pp 67–100

    Google Scholar 

  • Zimmermann U, Schneider H, Wegner LH, Haase A (2004) Water ascent in tall trees: does evolution of land plants rely on a highly metastable state? New Phytol 162(3):575–615

    Article  PubMed  Google Scholar 

  • Zuther E, Juszczak I, Lee YP, Baier M, Hincha DK (2015) Time-dependent deacclimation after cold acclimation in Arabidopsis thaliana accessions. Sci Rep 5:12199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuther E, Schaarschmidt S, Fischer A, Erban A, Pagter M, Mubeen U, Giavalisco P, Kopka J, Sprenger H, Hincha DK (2019) Molecular signatures associated with increased freezing tolerance due to low temperature memory in Arabidopsis. Plant Cell Environ 42(3):854–873

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, A. (2022). Low Temperature Stress and Plant-Water Relationship: A Review. In: Physiological Processes in Plants Under Low Temperature Stress. Springer, Singapore. https://doi.org/10.1007/978-981-16-9037-2_2

Download citation

Publish with us

Policies and ethics