Skip to main content
Log in

Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Nitric oxide (NO), an endogenous signaling molecule in animals and plants, mediates responses to abiotic and biotic stresses. Our previous work demonstrated that 100 μM sodium nitroprusside (SNP, an NO donor) treatment of maize seedlings increased K+ accumulation in roots, leaves and sheathes, while decreasing Na+ accumulation (Zhang et al. in J Plant Physiol Mol Biol 30:455–459, 2004b). Here we investigate how NO regulates Na+, K+ ion homeostasis in maize. Pre-treatment with 100 μM SNP for 2 days improved later growth of maize plants under 100 mM NaCl stress, as indicated by increased dry matter accumulation, increased chlorophyll content, and decreased membrane leakage from leaf cells. An NO scavenger, methylene blue (MB-1), blocked the effect of SNP. These results indicated that SNP-derived NO enhanced maize tolerance to salt stress. Further analysis showed that NaCl induced a transient increase in the NO level in maize leaves. Both NO and NaCl treatment stimulated vacuolar H+-ATPase and H+-PPase activities, resulting in increased H+-translocation and Na+/H+ exchange. NaCl-induced H+-ATPase and H+-PPase activities were diminished by MB-1. 1-Butanol, an inhibitor of phosphatidic acid (PA) production by phospholipase D (PLD), reduced NaCl- and NO-induced H+-ATPase activation. In contrast, applied PA stimulated H+-ATPase activity. These results suggest that NO acts as a signal molecule in the NaCl response by increasing the activities of vacuolar H+-ATPase and H+-PPase, which provide the driving force for Na+/H+ exchange. PLD and PA play an important role in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AtNOS:

Homology of mammalian nitric oxide synthase in Arabidopsis

FFA:

Free fatty acid

MAPK:

Mitogen-activated protein kinase

MB-1:

Methylene blue

NO:

Nitric oxide

NR:

Nitrate reductase

PA:

Phosphatidic acid

PLD:

Phospholipase D

SNP:

Sodium nitroprusside

References

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiporter in Arabidopsis. Science 298:1256–1258

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzyme in isolated chloroplast: phenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    PubMed  CAS  Google Scholar 

  • Beligni MV, Fath Angelika, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129:1642–1650

    Article  PubMed  CAS  Google Scholar 

  • Bennett AB, Spanswick RM (1983) Optical measures of ΔpH and Δψ in corn root membrane vesicles: kinetic analysis of Cl- effects on a proton-translocating ATPase. J Membrane Biol 71:95–107

    Article  CAS  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Briskin DP, Leonard RT, Hodges TK (1987) Isolation of the plasma membrane: membrane markers and general principles. Meth Enzymol 148:542–558

    Article  CAS  Google Scholar 

  • Capone R, Tiwari BS, Levine A (2004) Rapid transmission of oxidative and nitrosative stress signals from roots to shoots in Arabidopsis. Plant Physiol Biochem 42:425–428

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Zhang W-H, Liu Y-L (1999) Effect of NaCl, glutathione and ascorbic acid on function of tonoplast vesicles isolated from barley leaves. J Plant Physiol 155:685–690

    CAS  Google Scholar 

  • Cragan JD (1999). Teratogen update: methylene blue. Teratology 60:42–48

    Article  PubMed  CAS  Google Scholar 

  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontcchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense -induced lateral root formation in tomato. Planta 221:297–303

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:1–7

    Article  CAS  Google Scholar 

  • Delledonne M, Xia YJ, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  PubMed  CAS  Google Scholar 

  • García-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  Google Scholar 

  • García-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790–792

    Article  PubMed  CAS  Google Scholar 

  • Gouvêa CMCP, Souza JF, Magalhães ACN, Martins IS (1997) NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21:183–187

    Article  Google Scholar 

  • Graziano M, Beligni MV, Lamattina L (2002) Nitric oxide improves internal iron availability in plants. Plant Physiol 130:1852–1859

    Article  PubMed  CAS  Google Scholar 

  • Guo F-Q, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • He Y, Tang R-H, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Takahashi S, Shinozaki K (2001) Involvement of a novel Arabidopsis phospholipase D, AtPLDδ, in dehydration-inducible accumulation of phosphatidic acid in stress signalling. Plant J 26: 595–605

    Article  PubMed  CAS  Google Scholar 

  • Kondoh K, Koshiba T, Hiraoka A, Satô M (1998) γ-Irradiation damage to the tonoplast in cultured spinach cells. Environ Exp Bot 39:97–104

    Article  CAS  Google Scholar 

  • Kumar D, Klessig DF (2000) Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid. Mol Plant Microbe Interact 13:347–351

    Article  PubMed  CAS  Google Scholar 

  • Lamotte O, Courtois C, Barnavon L, Pugin A, Wendehenne D (2005) Nitric oxide in plants: the biosynthesis and cell signalling properties of a fascinating molecule. Planta 221:1–4

    Article  PubMed  CAS  Google Scholar 

  • Lim H-K, Choi Y-A, Park W, Lee T, Ryu SH, Kim S-Y, Kim J-R, Kim J-H, Baek S-H (2003) Phosphatidic acid regulates systemic inflammatory responses by modulating the Akt-mammalian target of rapamycin-p70 S6 kinase 1 pathway. J Biol Chem 278:45117–45127

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lombardo MC Lamattina L (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135:279–286

    Article  PubMed  CAS  Google Scholar 

  • Qiu Q-S, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu JK (2004). Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem 279:207–215

    Article  PubMed  CAS  Google Scholar 

  • Rea PA, Poole RJ (1993) Vacuolar H+-translocating pyrophosphatase. Annu Rev Plant Physiol Plant Mol Biol 44:157–180

    CAS  Google Scholar 

  • Shi H, Lee B-h, Wu S-J, Zhu J-K (2003). Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  PubMed  CAS  Google Scholar 

  • Shou H, Bordallo P, Fan J-B Yeakley JM, Bibikova M, Sheen J, Wang K (2004) Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci USA 101:3298–3303

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Kasamo K (1993). Effects of aging on the ATP- and Pyrophosphate-dependent pumping of protons across the tonoplast isolated from pumpkin cotyledons. Plant Cell Physiol 34:613–619

    CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot (Lond) 91:503–527

    Article  CAS  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375

    Article  PubMed  CAS  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja 0 (1999) Salt stress in Mesembryanthemum crystallinum L.suspension cells activates adaptive mechanisms similar to those observed in the whole plant. Planta 207:426–35

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Sze H (1985) Similarities and differences between the tonoplast-type and the mitochondrial H+-ATPase of oat roots. J Biol Chem 260:10434–10443

    PubMed  CAS  Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defence response. Curr Opin Plant Biol 7:449–455

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  PubMed  CAS  Google Scholar 

  • Yapa PA, Kawasaki T, Matsumoto H (1986) Changes of some membrane associated enzyme activities and degradation of membrane phospholipids in cucumber roots due to Ca2+ starvation. Plant Cell Physiol 27:223–232

    CAS  Google Scholar 

  • Zhang W, Diao F, Yu B, Liu Y (1998) H+-ATPase and H+-transport activities in tonoplast vesicles from barley roots under salt stress and influence of calcium and abscisic acid. J Plant Nutr 21:447–458

    Article  CAS  Google Scholar 

  • Zhang W, Wang C, Qin C, Wood T, Olafsdottir G, Welti R, Wang X (2003) The oleate-stimulated phospholipase D, PLDδ, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15:2285–2295

    Article  PubMed  CAS  Google Scholar 

  • Zhang W-H, Chen Q, Yu B-J, Liu Y-L (2004a) Tonoplast H+-ATPase activity in barley roots is regulated by ATP and pyrophosphate contents under salt stress. J Plant Physiol Plant Mol Biol 30: 45–52

    CAS  Google Scholar 

  • Zhang Y-Y, Liu J, Liu Y-L (2004b) Nitric oxide alleviates growth inhibition of maize seedlings under salt stress (in Chinese). J Plant physiol Mol Biol 30:455–459

    CAS  Google Scholar 

  • Zhang W, Yu L, Zhang Y, Wang X (2005) Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species. Biochim Biophys Acta 1736:1–9

    PubMed  CAS  Google Scholar 

  • Zhao L, Zhang F, Guo J Yang Y, Li B, Zhang L (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    Article  PubMed  CAS  Google Scholar 

  • Zhu J-K (2003). Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Pingqing He, Xuanqin Chen, Xiaoxiang Liu, Ms. Yana Qu, and Lijuan Yu for their assistance in the determination of fluorescence and grinding. We thank Dr. Ruth Welti for critically reading the manuscript. Grants from the National Basic Research Program of China (2006CB100100), National Natural Science Foundation of China (30470162 and 30370850) and New Century Excellent Talents in University (NCET-04-0504) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, L., Liu, Y. et al. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224, 545–555 (2006). https://doi.org/10.1007/s00425-006-0242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0242-z

Keywords

Navigation