Skip to main content
Log in

Signal transduction during cold stress in plants

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Cold stress signal transduction is a complex process. Many physiological changes like tissue break down and senescence occur due to cold stress. Low temperature is initially perceived by plasma membrane either due to change in membrane fluidity or with the help of sensors like Ca2+ permeable channels, histidine kinases, receptor kinases and phospholipases. Subsequently, cytoskeleton reorganization and cytosolic Ca2+ influx takes place. Increase in cytosolic Ca2+ is sensed by CDPKs, phosphatase and MAPKs, which transduce the signals to switch on transcriptional cascades. Photosynthetic apparatus have also been thought to be responsible for low temperature perception and signal transduction. Many cold induced pathways are activated to protect plants from deleterious effects of cold stress, but till date, most studied pathway is ICE-CBF-COR signaling pathway. However, the importance of CBF independent pathways in cold acclimation is supported by few Arabidopsis mutants’ studies. Cold stress signaling has certain pathways common with other abiotic and biotic stress signaling which suggest cross-talks among these. Most of the economically important crops are sensitive to low temperature, but very few studies are available on cold susceptible crop plants. Therefore, it is necessary to understand signal transducing components from model plants and utilize that knowledge to improve survival of cold sensitive crop plants at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, M., Hao, Y., Kapoor, A., Dong, C.H., Fujii, H., Zheng, X. and Zhu, J.K. (2006). A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem., 281: 37636–37645.

    Article  PubMed  CAS  Google Scholar 

  • Aguilar, P.S., Hernandez-Arriaga, A.M., Cybulski, L.E., Erazo, A.C. and de Mendoza, D. (2001). Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J., 20: 1681–1691.

    Article  PubMed  CAS  Google Scholar 

  • Beck, E.H., Fettig, S., Knake, C., Hartig, K. and Bhattarai, T. (2007). Specific and unspecific responses of plants to cold and drought stress. J. Biosci., 32: 501–510.

    Article  PubMed  CAS  Google Scholar 

  • Cheong, Y.H., Kim, K.N., Pandey, G.K., Gupta, R., Grant, J.J. and Luan, S. (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell, 15: 1833–1845.

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M. and Zhu, J.K. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev., 17: 1043–1054.

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy, V., Schumaker, K. and Zhu, J.K. (2004). Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J. Exp. Bot., 55: 225–236.

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy, V., Zhu, J. and Zhu, J.K. (2006). Gene regulation during cold acclimation in plants. Physiol. Plant., 126: 52–61.

    Article  CAS  Google Scholar 

  • Cook, D., Fowler, S., Fiehn, O. and Thomashow, M.F. (2004). A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc. Natl. Acad. Sci. USA, 101: 15243–15248.

    Article  PubMed  CAS  Google Scholar 

  • Davletova, S., Schlauch, K., Coutu, J. and Mittler, R. (2005). The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol., 139: 847–856.

    Article  PubMed  CAS  Google Scholar 

  • del Pozo, O., Pedley, K.F. and Martin, G.B. (2004). MAPKKKalpha is a positive regulator of cell death associated with both plant immunity and disease. EMBO J., 23: 3072–3082.

    Article  PubMed  CAS  Google Scholar 

  • Deswal, R., Chowdhary, G.K. and Sopory, S.K. (2004). Purification and characterization of a PMA-stimulated kinase and identification of PMA-induced phosphorylation of a polypeptide that is dephosphorylated by low temperature in Brassica juncea. Biochem. Biophys. Res. Commun., 322: 420–427.

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe, P., Laxalt, A.M., Goedhart, J., Gadella, T.W. and Munnik, T. (2003). Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell, 15: 2666–2679.

    Article  PubMed  CAS  Google Scholar 

  • Dong, C.H., Agarwal, M., Zhang, Y., Xie, Q. and Zhu, J.K. (2006). The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc. Natl. Acad. Sci. USA, 103: 8281–8286.

    Article  PubMed  CAS  Google Scholar 

  • Ensminger, I., Busch, F. and Huner, N.P.A. (2006). Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol. Plant., 126: 28–44.

    Article  CAS  Google Scholar 

  • Evans, N.H., McAinsh, M.R. and Hetherington, A.M. (2001). Calcium oscillations in higher plants. Curr. Plant Biol., 4: 415–420.

    Article  CAS  Google Scholar 

  • Fey, V., Wagner, R., Brautigam, K. and Pfannschmidt, T. (2005). Photosynthetic redox control of nuclear gene expression. J. Exp. Bot., 56: 1491–1498.

    Article  PubMed  CAS  Google Scholar 

  • Fowler, S. and Thomashow, M.F. (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 14: 1675–1690.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner, J.C., Harper, J.D., Weerakoon, N.D., Collings, D.A., Ritchie, S., Gilroy, S., Cyr, R.J. and Marc, J. (2001). A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell, 13: 2143–2158.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, S.J., Fowler, S.G. and Thomashow, M.F. (2004). Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol. Biol., 54: 767–781.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D. and Thomashow, M.F. (2000). Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol., 124: 1854–1865.

    Article  PubMed  CAS  Google Scholar 

  • Gray, G.R., Chauvin, L.P., Sarhan, F. and Huner, N. (1997). Cold acclimation and freezing tolerance (A complex interaction of light and temperature). Plant Physiol., 114: 467–474.

    PubMed  CAS  Google Scholar 

  • Gusta, L.V., Trischuk, R. and Weiser, C.J. (2005). Plant cold acclimation: The role of abscisic acid. J. Plant Growth Regul., 24: 308–318.

    Article  CAS  Google Scholar 

  • Guy, C.L. (1990). Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol., 41: 187–223.

    CAS  Google Scholar 

  • Henriksson, K.N. and Trewavas, A.J. (2003). The effect of short-term low-temperature treatments on gene expression in Arabidopsis correlates with changes in intracellular Ca2+ levels. Plant, Cell Environ., 26: 485–496.

    Article  CAS  Google Scholar 

  • Hong, S.W., Jon, J.H., Kwak, J.M. and Nam, H.G. (1997). Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol., 113: 1203–1212.

    Article  PubMed  CAS  Google Scholar 

  • Huner, N.P.A., Oquist, G. and Sarhan, F. (1998). Energy balance and acclimation to light and cold. Trends Plant Sci., 3: 224–230.

    Article  Google Scholar 

  • Inaba, M., Suzuki, I., Szalontai, B., Kanesaki, Y., Los, D.A., Hayashi, H. and Murata, N. (2003). Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in synechocystis. J. Biol. Chem., 278: 12191–12198.

    Article  PubMed  CAS  Google Scholar 

  • Ishitani, M., Xiong, L., Stevenson, B. and Zhu, J.K. (1997). Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell, 9: 1935–1949.

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O. and Thomashow, M.F. (1998). Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 280: 104–106.

    Article  PubMed  CAS  Google Scholar 

  • Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T. and Thomashow, M.F. (2001). Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol., 127: 910–917.

    Article  PubMed  CAS  Google Scholar 

  • Jin, H., Axtell, M.J., Dahlbeck, D., Ekwenna, O., Zhang, S., Staskawicz, B. and Baker, B. (2002). NPK1, an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev. Cell, 3: 291–297.

    Article  PubMed  CAS  Google Scholar 

  • Jonak, C., Kiegerl, S., Ligterink, W., Barker, P.J., Huskisson, N.S. and Hirt, H. (1996). Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA, 93: 11274–11279.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K.N., Cheong, Y.H., Grant, J.J., Pandey, G.K. and Luan, S. (2003). CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell, 15: 411–423.

    Article  PubMed  CAS  Google Scholar 

  • Klimecka, M. and Muszynska, G. (2007). Structure and functions of plant calcium-dependent protein kinases. Acta Biochim. Pol., 54: 219–233.

    PubMed  CAS  Google Scholar 

  • Knight, H. and Knight, M.R. (2000). Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis. J. Exp. Bot., 51: 1679–1686.

    Article  PubMed  CAS  Google Scholar 

  • Knight, H. and Knight, M.R. (2001). Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci., 6: 262–267.

    Article  PubMed  CAS  Google Scholar 

  • Knight, H., Trewavas, A.J. and Knight, M.R. (1996). Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell, 8: 489–503.

    Article  PubMed  CAS  Google Scholar 

  • Knight, H., Veale, E.L., Warren, G.J. and Knight, M.R. (1999). The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell, 11: 875–886.

    Article  PubMed  CAS  Google Scholar 

  • Knight, M.R., Campbell, A.K., Smith, S.M. and Trewavas, A.J. (1991). Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature, 352: 524–526.

    Article  PubMed  CAS  Google Scholar 

  • Komatsu, S., Yang, G., Khan, M., Onodera, H., Toki, S. and Yamaguchi, M. (2007). Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants. Mol. Genet. Genomics, 277: 713–723.

    Article  PubMed  CAS  Google Scholar 

  • Kovtun, Y., Chiu, W.L., Tena, G. and Sheen, J. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA, 97: 2940–2945.

    Article  PubMed  CAS  Google Scholar 

  • Kovtun, Y., Chiu, W.L., Zeng, W. and Sheen, J. (1998). Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature, 395: 716–720.

    Article  PubMed  CAS  Google Scholar 

  • Kudla, J., Xu, Q., Harter, K., Gruissem, W. and Luan, S. (1999). Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc. Natl. Acad. Sci. USA, 96: 4718–4723.

    Article  PubMed  CAS  Google Scholar 

  • Lecourieux, D., Ranjeva, R. and Pugin, A. (2006). Calcium in plant defence-signalling pathways. New Phytol., 171: 249–269.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H., Xiong, L., Gong, Z., Ishitani, M., Stevenson, B. and Zhu, J.K. (2001). The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo—cytoplasmic partitioning. Genes Dev., 15: 912–924.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10: 1391–1406.

    Article  PubMed  CAS  Google Scholar 

  • Los, D.A. and Murata, N. (2004). Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta., 1666: 142–157.

    PubMed  CAS  Google Scholar 

  • Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J., 38: 982–993.

    Article  PubMed  CAS  Google Scholar 

  • Medina, J., Bargues, M., Terol, J., Perez-Alonso, M. and Salinas, J. (1999). The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol., 119: 463–470.

    Article  PubMed  CAS  Google Scholar 

  • Mikami, K. and Murata, N. (2003). Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog. Lipid. Res., 42: 527–543.

    Article  PubMed  CAS  Google Scholar 

  • Minorsky, P.V. (1989). Temperature sensing by plants: A review and hypothesis. Plant Cell Environ., 12: 119–135.

    Article  CAS  Google Scholar 

  • Minorsky, P.V. and Spanswick, R.M. (1989). Electrophysiological evidence for calcium in temperature sensing by roots of cucumber seedlings. Plant Cell Environ., 12: 137–143.

    Article  CAS  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7: 405–410.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci., 9: 490–498.

    Article  PubMed  CAS  Google Scholar 

  • Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T., Ashworth, E.N., Bressan, R.A., Yun, D.J. and Hasegawa, P.M. (2007). SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell, 19: 1403–1414.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi, T., Hayashida, N., Yamaguchi-Shinozaki, K., Kamada, H. and Shinozaki, K. (1995). Two genes that encode ribosomal-protein S6 kinase homologs are induced by cold or salinity stress in Arabidopsis thaliana. FEBS Lett., 358: 199–204.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K., Matsumoto, K. and Shinozaki, K. (1996). A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 93: 765–769.

    Article  PubMed  CAS  Google Scholar 

  • Monroy, A.F., Castonguay, Y., Laberge, S., Sarhan, F., Vezina, L.P. and Dhindsa, R.S. (1993). A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiol., 102: 873–879.

    Article  PubMed  CAS  Google Scholar 

  • Monroy, A.F. and Dhindsa, R.S. (1995). Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell, 7: 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Monroy, A.F., Sangwan, V. and Dhindsa, R.S. (1998). Low temperature signal transduction during cold acclimation: protein phosphatase 2A as an early target for cold-inactivation. Plant J., 13: 653–660.

    Article  CAS  Google Scholar 

  • Moon, H., Lee, B., Choi, G., Shin, D., Prasad, D.T., Lee, O., Kwak, S.S., Kim, D.H., Nam, J., Bahk, J., Hong, J.C., Lee, S.Y., Cho, M.J., Lim, C.O. and Yun, D.J. (2003). NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. USA, 100: 358–363.

    Article  PubMed  CAS  Google Scholar 

  • Murata, N. and Los, D.A. (1997). Membrane Fluidity and Temperature Perception. Plant Physiol., 115: 875–879.

    PubMed  CAS  Google Scholar 

  • Nakagami, H., Pitzschke, A. and Hirt, H. (2005). Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci., 10: 339–346.

    Article  PubMed  CAS  Google Scholar 

  • Novillo, F., Alonso, J.M., Ecker, J.R. and Salinas, J. (2004). CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA, 101: 3985–3990.

    Article  PubMed  CAS  Google Scholar 

  • Orvar, B.L., Sangwan, V., Omann, F. and Dhindsa, R.S. (2000). Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J., 23: 785–794.

    Article  PubMed  CAS  Google Scholar 

  • Plieth, C. (2005). Calcium: Just another regulator in the machinery of life? Ann. Bot. (Lond.), 96: 1–8.

    Article  CAS  Google Scholar 

  • Plieth, C., Hansen, U.P., Knight, H. and Knight, M.R. (1999). Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J., 18: 491–497.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, T.K., Anderson, M.D., Martin, B.A. and Stewart, C.R. (1994). Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 6: 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Ray, S., Agarwal, P., Arora, R., Kapoor, S. and Tyagi, A.K. (2007). Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol. Genet. Genomics, (DOI 10.1007/s00438-007-0267-4)

  • Reddy, V.S. and Reddy, A.S. (2004). Proteomics of calcium-signaling components in plants. Phytochemistry, 65: 1745–1776.

    Article  PubMed  CAS  Google Scholar 

  • Ruelland, E., Cantrel, C., Gawer, M., Kader, J.C. and Zachowski, A. (2002). Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol., 130: 999–1007.

    Article  PubMed  CAS  Google Scholar 

  • Saijo, Y., Kinoshita, N., Ishiyama, K., Hata, S., Kyozuka, J., Hayakawa, T., Nakamura, T., Shimamoto, K., Yamaya, T. and Izui, K. (2001). A Ca2+-dependent protein kinase that endows rice plants with cold-and salt-stress tolerance functions in vascular bundles. Plant Cell Physiol., 42: 1228–1233.

    Article  PubMed  CAS  Google Scholar 

  • Salinas, J. (2002) Molecular mechanisms of signal transduction in cold acclimation. In: Plant Signal Transduction (Eds. Scheel D. and Wasternack C.) Oxford University Press, pp. 116–139.

  • Sangwan, V., Foulds, I., Singh, J. and Dhindsa, R.S. (2001). Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J., 27: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Sangwan, V., Orvar, B.L., Beyerly, J., Hirt, H. and Dhindsa, R.S. (2002). Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J., 31: 629–638.

    Article  PubMed  CAS  Google Scholar 

  • Sarhan, F. and Danyluk, J. (1998). Engineering cold-tolerant crops-throwing the master switch. Trends Plant Sci., 3: 289–290.

    Article  Google Scholar 

  • Sarhan, S., Hitchcock, J.M., Grauffel, C.A. and Wettstein, J.G. (1997). Comparative antipsychotic profiles of neurotensin and a related systemically active peptide agonist. Peptides, 18: 1223–1227.

    Article  PubMed  CAS  Google Scholar 

  • Sathyanarayanan, P.V. and Poovaiah, B.W. (2004). Decoding Ca2+ signals in plants. CRC Crit. Rev. Plant Sci., 23: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, P., Sharma, N. and Deswal, R. (2005). The molecular biology of the low-temperature response in plants. BioEssays, 27: 1048–1059.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki, K., Yamaguchi-Shinozaki, K. and Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol., 6: 410–417.

    Article  PubMed  CAS  Google Scholar 

  • Shou, H., Bordallo, P., Fan, J.B., Yeakley, J.M., Bibikova, M., Sheen, J. and Wang, K. (2004a). Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc. Natl. Acad. Sci. USA, 101: 3298–3303.

    Article  PubMed  CAS  Google Scholar 

  • Shou, H., Bordallo, P. and Wang, K. (2004b). Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J. Exp. Bot., 55: 1013–1019.

    Article  PubMed  CAS  Google Scholar 

  • Stockinger, E.J., Gilmour, S.J. and Thomashow, M.F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA, 94: 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  • Stockinger, E.J., Mao, Y., Regier, M.K., Triezenberg, S.J. and Thomashow, M.F. (2001). Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res., 29: 1524–1533.

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah, C.C., Bush, D.S. and Sachs, M.M. (1998). Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells. Plant Physiol., 118: 759–771.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, I., Los, D.A. and Murata, N. (2000). Perception and transduction of low-temperature signals to induce desaturation of fatty acids. Biochem. Soc. Trans., 28: 628–630.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, N. and Mittler, R. (2006). Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Phisiol. Plant., 126: 45–51.

    Article  CAS  Google Scholar 

  • Tahtiharju, S., Sangwan, V., Monroy, A.F., Dhindsa, R.S. and Borg, M. (1997). The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. Planta, 203: 442–447.

    Article  PubMed  CAS  Google Scholar 

  • Thomashow, M.F. (1998). Role of cold-responsive genes in plant freezing tolerance. Plant Physiol., 118: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Thomashow, M.F. (1999). Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50: 571–599.

    Article  PubMed  CAS  Google Scholar 

  • Uemura, M., Joseph, R.A. and Steponkus, P.L. (1995). Cold acclimation of Arabidopsis thaliana (Effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol., 109: 15–30.

    PubMed  CAS  Google Scholar 

  • Urao, T., Miyata, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2000a). Possible His to Asp phosphorelay signaling in an Arabidopsis two-component system. FEBS Lett., 478: 227–232.

    Article  PubMed  CAS  Google Scholar 

  • Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T. and Shinozaki, K. (1999). A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell, 11: 1743–1754.

    Article  PubMed  CAS  Google Scholar 

  • Urao, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2000b). Two-component systems in plant signal transduction. Trends Plant Sci., 5: 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Van Buskirk, H.A. and Thomashow, M.F. (2006). Arabidopsis transcription factors regulating cold acclimation. Phisiol. Plant., 126: 72–80.

    Article  Google Scholar 

  • van der Luit, A.H., Olivari, C., Haley, A., Knight, M.R. and Trewavas, A.J. (1999). Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol., 121: 705–714.

    Article  Google Scholar 

  • Vaultier, M.N., Cantrel, C., Vergnolle, C., Justin, A.M., Demandre, C., Benhassaine-Kesri, G., Cicek, D., Zachowski, A. and Ruelland, E. (2006). Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells. FEBS Lett., 580: 4218–4223.

    Article  PubMed  CAS  Google Scholar 

  • Vij, S. and Tyagi, A.K. (2007). Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol. J., 5: 361–380.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G. and Thomashow, M.F. (2005). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J., 41: 195–211.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Li, W., Li, M. and Welti, R. (2006). Profiling lipid changes in plant response to low temperatures. Phisiol. Plant., 126: 90–96.

    Article  CAS  Google Scholar 

  • Widmann, C., Gibson, S., Jarpe, M.B. and Johnson, G.L. (1999). Mitogen-Activated Protein Kinase: Conservation of a three-kinase module from yeast to human. Phisiol. Review, 79: 143–180.

    CAS  Google Scholar 

  • Xiang, Y., Huang, Y. and Xiong, L. (2007). Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol., 144: 1416–1428.

    Article  PubMed  CAS  Google Scholar 

  • Xin, Z. and Browse, J. (1998). Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc. Natl. Acad. Sci. USA, 95: 7799–7804.

    Article  PubMed  CAS  Google Scholar 

  • Xin, Z., Mandaokar, A., Chen, J., Last, R.L. and Browse, J. (2007). Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant J., 49: 786–799.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, L., Schumaker, K.S. and Zhu, J.K. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell, 14Suppl: S165–S183.

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K. and Shinozaki, K. (1993). Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol. Gen. Genet., 236: 331–340.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 6: 251–264.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K. and Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci., 10: 88–94.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K. and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol., 57: 781–803.

    Article  PubMed  CAS  Google Scholar 

  • Yang, T. and Poovaiah, B.W. (2003). Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci., 8: 505–512.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Fowler, S.G., Cheng, H., Lou, Y., Rhee, S.Y., Stockinger, E.J. and Thomashow, M.F. (2004). Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J., 39: 905–919.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J., Dong, C.H. and Zhu, J.K. (2007). Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr. Opin. Plant Biol., 10: 290–295.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J., Shi, H., Lee, B.H., Damsz, B., Cheng, S., Stirm, V., Zhu, J.K., Hasegawa, P.M. and Bressan, R.A. (2004). An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc. Natl. Acad. Sci. USA, 101: 9873–9878.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J., Verslues, P.E., Zheng, X., Lee, B.H., Zhan, X., Manabe, Y., Sokolchik, I., Zhu, Y., Dong, C.H., Zhu, J.K., Hasegawa, P.M. and Bressan, R.A. (2005). HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc. Natl. Acad. Sci. USA, 102: 9966–9971.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J.K. (2001). Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol., 4: 401–406.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solanke, A.U., Sharma, A.K. Signal transduction during cold stress in plants. Physiol Mol Biol Plants 14, 69–79 (2008). https://doi.org/10.1007/s12298-008-0006-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-008-0006-2

Key words

Navigation