Skip to main content

Adaptive Physiological Responses of Plants under Abiotic Stresses: Role of Phytohormones

  • Chapter
  • First Online:
Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I

Abstract

Abiotic stress factors such as drought, flooding, cold, heat waves, ultra violet radiations, oxidizing agents and salinity in the current era of climate change is jeopardizing the plant growth and development leading to crop failure worldwide. Engineered plants with improved tolerance to abiotic stresses would provide opportunities to adapt crops to future climates coupled with enhanced food productivity and sustainable agricultural development. Growth and development of plants involve a wide range of sophisticated genetic, hormonal, metabolic and environmental events which are tightly regulated by internal and external cues, such as phytohormones (including various biostimulants and different organic and inorganic elicitors), temperature, light irradiation, etc. Out of these, phytohormones such as jasmonates, gibberellins, abscisic acid, brassinosteroids, nitric oxide, salicylic acid, etc. have evolved to control vital functions in regulating various plant physiological and developmental processes, ranging from seed germination, photosynthesis, leaf senescence, pollen growth, to plant defense responses, and ameliorating various abiotic stresses. The role of such phytohormones in conferring plant adaptation under dynamic climate changes is still in infancy stage. Few reports are available on the current topic. In this chapter, we attempt to summarize recent studies that have provided insights of the plant environmental adaptability and the multidimensional role of different phytohormones viz. salicylic acid (SA), nitric oxide (NO) and hydrogen sulphite (H2S) in regulating various developmental processes and stress tolerance, taken together with the molecular mechanisms of phytohormone signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas F (2013) Analysis of a historical (1981–2010) temperature record of the Punjab province of Pakistan. Earth Interact 17:1–23

    Article  Google Scholar 

  • Abreu ME, Munné-Bosch S (2008) Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: a case study in field-grown Salvia officinalis L. plants. Environ Exp Bot 64:105–112

    Article  CAS  Google Scholar 

  • Aftab T, Khan MMA, da Silva JAT, Idrees M, Naeem M (2011) Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. J Plant Growth Regul 30:425–435

    Article  CAS  Google Scholar 

  • Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    Article  CAS  PubMed  Google Scholar 

  • Ahanger MA, Alyemeni MN, Wijaya L, Alamri SA, Alam P, Ashraf M, Ahmad P (2018) Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS One 13:e0202175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard Brassica juncea (L.) Czern. & Coss. Plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44

    Article  CAS  Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868

    PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Abd_Allah EF, Alyemeni MN, Wijaya L, Alam P, Bhardwaj R, Siddique KH (2018a) Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate–glutathione cycle and secondary metabolites. Sci Rep 8:13515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmad B, Jaleel H, Sadiq Y, Khan MMA, Shabbir A (2018b) Response of exogenous salicylic acid on cadmium induced photosynthetic damage, antioxidant metabolism and essential oil production in peppermint. Plant Growth Regul 86:273–286

    Article  CAS  Google Scholar 

  • Aimar D, Calafat M, Andrade AM, Carassay L, Abdala GI, Molas ML (2011) Drought tolerance and stress hormones: from model organisms to forage crops. In: Vasanthaiah H, Kambiranda D (eds) Plants and environment. InTech, Rijeka, Croatia, pp 137–164

    Google Scholar 

  • Ali S, Farooq MA, Hussain S, Yasmeen T, Abbasi GH, Zhang G (2013) Alleviation of chromium toxicity by hydrogen sulfide in barley. Environ Toxicol Chem 32:2234–2239

    Article  CAS  PubMed  Google Scholar 

  • Ali B, Song WJ, Hu WZ, Luo XN, Gill RA, Wang J, Zhou WJ (2014) Hydrogen sulfide alleviates lead-induced photosynthetic and ultrastructural changes in oilseed rape. Ecotoxicol Environ Saf 102:25–33

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Rizwan M, Zaid A, Arif MS, Yasmeen T, Hussain A, Abbasi GH (2018) 5-Aminolevulinic acid-induced heavy metal stress tolerance and underlying mechanisms in plants. J Plant Growth Regul 37:1423–1436

    Article  CAS  Google Scholar 

  • Ali S, Rizwan M, Arif MS, Ahmad R, Hasanuzzaman M, Ali B, Hussain A (2019) Approaches in enhancing thermotolerance in plants: an updated review. J Plant Growth Regul 12:1–25. https://doi.org/10.1007/s00344-019-09994-x

    Article  CAS  Google Scholar 

  • Almansouri M, Kinet JM, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231:243–254

    Article  CAS  Google Scholar 

  • Alsahli A, Mohamed AK, Alaraidh I, Al-Ghamdi A, Al-Watban A, El-Zaidy M, Alzahrani SM (2019) Salicylic acid alleviates salinity stress through the modulation of biochemical attributes and some key antioxidants in wheat seedlings. Pak J Bot 51:1551–1559

    Article  CAS  Google Scholar 

  • Amirinejad AA, Sayyari M, Ghanbari F, Kordi S (2017) Salicylic acid improves salinity-alkalinity tolerance in pepper (Capsicum annuum L.). Adv Hort Sci 31:157–163

    Google Scholar 

  • Asgher M, Per TS, Masood A, Fatma M, Freschi L, Corpas FJ, Khan NA (2017) Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environ Sci Pollut Res 24:2273–2285

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Azooz MM, Youssef AM, Ahmad P (2011) Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. Int J Plant Physiol Biochem 3:253–264

    CAS  Google Scholar 

  • Bai X, Dong Y, Kong J, Xu L, Liu S (2014) Effects of application of salicylic acid alleviates cadmium toxicity in perennial ryegrass. Plant Growth Regul 75:695–706

    Article  CAS  Google Scholar 

  • Bandurska H, Stroinski A (2005) The effect of salicylic acid on barley response to water deficit. Acta Physiol Plant 27:379–386

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Small heat shock proteins: structural assembly and functional responses against heat stress in plants. In: Ahmad P, Ahanger MA, Singh VP, Tripathi DK, Alam P, Alyemeni MN (eds) Plant metabolites and regulation under abiotic stress. Academic Press, Elsevier, London, pp 367–374

    Chapter  Google Scholar 

  • Banerjee A, Tripathi DK, Roychoudhury A (2018) Hydrogen sulphide trapeze: Environmental stress amelioration and phytohormone crosstalk. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2018.08.028

    Article  CAS  PubMed  Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A, Rodríguez-Serrano M, Esteban FJ, Fernández-Ocana A, Del Río LA (2006) Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. J Exp Bot 57:1785–1793

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (2001) Nitric oxide in plants: the history is just beginning. Plant Cell Environ 24:267–278

    Article  CAS  Google Scholar 

  • Birke H, De Kok LJ, Wirtz M, Hell R (2015) The role of compartment-specific cysteine synthesis for sulfur homeostasis during H2S exposure in Arabidopsis. Plant Cell Physiol 56:358–367

    Article  CAS  PubMed  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Boussama N, Quariti O, Ghorbal MH (1999) Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress. J Plant Nutr 22:731–752

    Article  CAS  Google Scholar 

  • Campos FV, Oliveira JA, Pereira MG, Farnese FS (2019) Nitric oxide and phytohormone interactions in the response of Lactuca sativa to salinity stress. Planta:1–15

    Google Scholar 

  • Catinot J, Buchala A, Abou-Mansour E, Métraux JP (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett 582:473–478

    Article  CAS  PubMed  Google Scholar 

  • Cechin I, Cardoso GS, Fumis TDF, Corniani N (2015) Nitric oxide reduces oxidative damage induced by water stress in sunflower plants. Bragantia 74:200–206

    Article  CAS  Google Scholar 

  • Chakraborty U, Tongden C (2005) Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L. Curr Sci 89:384–389

    CAS  Google Scholar 

  • Chao YY, Chen CY, Huang WD, Kao CH (2010) Salicylic acid mediated hydrogen peroxide accumulation and protection against cd toxicity in rice leaves. Plant Soil 329:327–337

    Article  CAS  Google Scholar 

  • Chen Z, Zhang L, Zhu C (2015) Exogenous nitric oxide mediates alleviation of mercury toxicity by promoting auxin transport in roots or preventing oxidative stress in leaves of rice seedlings. Acta Physiol Plant 37:194

    Article  CAS  Google Scholar 

  • Chen X, Chen Q, Zhang X, Li R, Jia Y, Jia A, Hu X (2016) Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions. Plant Physiol Biochem 104:174–179

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Yang B, Hao Z, Zhu J, Zhang Y, Xu T (2018) Exogenous hydrogen sulfide ameliorates seed germination and seedling growth of cauliflower under lead stress and its antioxidant role. J Plant Growth Regul 37:5–15

    Article  CAS  Google Scholar 

  • Christou A, Filippou P, Manganaris GA, Fotopoulos V (2014) Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol 14:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Cingoz GS, Gurel E (2016) Effects of salicylic acid on thermotolerance and cardenolide accumulation under high temperature stress in Digitalis trojana Ivanina. Plant Physiol Biochem 105:145–149

    Article  CAS  PubMed  Google Scholar 

  • Clarke SM, Mur LAJ, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermo tolerance but is not essential for acquired thermo tolerance in Arabidopsis thaliana. The Plant J 38:432–447

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Chaki M, Fernandez-Ocana A, Valderrama R, Palma JM, Carreras A, Barroso JB (2008) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49:1711–1722

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, González-Gordo S, Cañas A, Palma JM (2019a) Nitric oxide and hydrogen sulfide in plants: which comes first? J Exp Bot. https://doi.org/10.1093/jxb/erz031

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, González-Gordo S, Muñoz-Vargas MA, Palma JM (2019b) Hydrogen sulfide: a novel component in Arabidopsis peroxisomes which triggers catalase inhibition. J Integ Plant Biol Doi. https://doi.org/10.1111/jipb.12779

  • Da Silva AS, Suassuna JF, de Melo AS, Costa RR, de Andrade WL, da Silva DC (2017a) Salicylic acid as attenuator of drought stress on germination and initial development of sesame. Rev Bras Eng Agríc Ambient 21:156–162

    Article  Google Scholar 

  • Da Silva CJ, Fontes EPB, Modolo LV (2017b) Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana. Plant Sci 256:148–159

    Article  PubMed  CAS  Google Scholar 

  • Dalal A, Bourstein R, Haish N, Shenhar I, Wallach R, Moshelion M (2019) Dynamic physiological Phenotyping of drought-stressed pepper plants treated with “productivity-enhancing” and “survivability-enhancing” biostimulants. Front Plant Sci 10:905

    Article  PubMed  PubMed Central  Google Scholar 

  • De Azevedo Neto AD, Prisco JT, Eneàs-Filho J, Medeiros JV, Gomes-Filho E (2005) Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J Plant Physiol 162:1114–1122

    Article  PubMed  CAS  Google Scholar 

  • Drazic G, Mihailovi CN (2005) Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci 168:511–517

    Article  CAS  Google Scholar 

  • Drazic G, Mihailovi_ CN, Lojic M (2006) Cadmium accumulation in Medicago sativa seedlings. Biol Plant 50:239–244

    Article  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Nat Acad Sci U S A 95:10328–10333

    Article  CAS  Google Scholar 

  • El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224

    Article  CAS  Google Scholar 

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433–1438

    Google Scholar 

  • Fan QJ, Liu JH (2012) Nitric oxide is involved in dehydration/drought tolerance in Poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. Plant Cell Rep 31:145–154

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Liu Z, Jin Z, Zhang L, Liu D, Pei Y (2016) An emphasis of hydrogen sulfide-cysteine cycle on enhancing the tolerance to chromium stress in Arabidopsis. Environ Poll 213:870–877

    Article  CAS  Google Scholar 

  • Farag M, Najeeb U, Yang J, Hu Z, Fang ZM (2017) Nitric oxide protects carbon assimilation process of watermelon from boron-induced oxidative injury. Plant Physiol Biochem 111:166–173

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 41:281–284

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. In Sustainable agriculture (pp. 153–188). Springer, Dordrecht.

    Chapter  Google Scholar 

  • Fatma M, Masood A, Per TS, Khan NA (2016) Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Front Plant Sci 7:521

    Article  PubMed  PubMed Central  Google Scholar 

  • Fayez KA, Bazaid SA (2014) Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J Saudi Soc Agr Sci 13:45–55

    Google Scholar 

  • Feller U, Kingston-Smith AH, Centritto M (2017) Abiotic stresses in agroecology: a challenge for whole plant physiology. Front Environ Sci 5:13

    Article  Google Scholar 

  • Food and Agricultural Organization [FAO] (2009) How to feed the world in 2050. Food and Agriculture Organization, Rome, Italy. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf

  • Fu P, Wang W, Hou L, Liu X (2013) Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L. Acta Soc Bot Pol 82:295–302

    Article  CAS  Google Scholar 

  • García-Mata C, Lamattina L (2010) Hydrogen sulfide, a novel gasotransmitter involved in guard cell signalling. New Phytol 188:977–984

    Article  PubMed  CAS  Google Scholar 

  • Gaupels F, Kuruthukulangarakoola GT, Durner J (2011) Upstream and downstream signals of nitric oxide in pathogen defense. Curr Opin Plant Biol 14:707–714

    Article  CAS  PubMed  Google Scholar 

  • Gémes K, Poór P, Sulyok Z, Szepesi Á, Szabó M, Tari I (2008) Role of salicylic acid pre-treatment on the photosynthetic performance of tomato plants (Lycopersicon esculentum mill. L. Cvar. Rio Fuego) under salt stress. Acta Biol Szeg 52:161–162

    Google Scholar 

  • Gill RA, Zhang N, Ali B, Farooq MA, Xu J, Gill MB, Bizeng Mao Zhou W (2016) Role of exogenous salicylic acid in regulating physio-morphic and molecular changes under chromium toxicity in black-and yellow-seeded Brassica napus L. Environ Sci Pollut Res 23:20483–20496

    Article  CAS  Google Scholar 

  • Gong J, Wang B, Zeng G, Yang C, Niu C, Niu Q, Zhou W, Liang Y (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164:1517–1522

    Article  CAS  PubMed  Google Scholar 

  • Gotor C, García I, Crespo JL, Romero LC (2013) Sulfide as a signaling molecule in autophagy. Autophagy 9:609–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    Article  CAS  PubMed  Google Scholar 

  • Hamada AM (1998) Effects of exogenously added ascorbic acid, thiamin or aspirin on photosynthesis and some related activities of drought-stressed wheat plants. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol 4. Kluwer Academic Publisher, Dordrecht, pp 2581–2584

    Chapter  Google Scholar 

  • Hamada AM, Al-Hakimi AMA (2001) Salicylic acid versus salinity-drought-induced stress on wheat seedlings. Rostlinna Vyroba 47:444–450

    CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Shinwari ZK, Hussain J, Sohn EY, Lee IJ (2010) Effect of salt stress on growth attributes and endogenous growth hormones of soybean cultivar Hwangkeumkong. Pak J Bot 42:3103–3112

    CAS  Google Scholar 

  • Hancock JT, Neill SJ, Wilson ID (2012) Nitric oxide and ABA in the control of plant function. Plant Sci 181:555–559

    Article  CAS  Google Scholar 

  • Hao GP, Xing Y, Zhang JH (2008) Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling. J Integ Plant Biol 50:435–442

    Article  CAS  Google Scholar 

  • Hao L, Zhao Y, Jin D, Zhang L, Bi X, Chen H, Li G (2012) Salicylic acid-altering Arabidopsis mutants response to salt stress. Plant Soil 354:81–95

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hayat S, Fariduddin Q, Ali B, Ahmad A (2005) Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agr Hung 53:433–437

    Article  CAS  Google Scholar 

  • Hayat S, Hasan SA, Fariduddin Q, Ahmad A (2008) Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. J Plant Inter 3:297–304

    CAS  Google Scholar 

  • He Y, Zhu ZJ (2009) Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidant enzyme activities in Lycopersicon esculentum. Biol Plant 52:792–795

    Article  Google Scholar 

  • He H, Zhan J, He L, Minghua G (2012) Nitric oxide signaling in aluminum stress in plants. Protoplasma 249:483–492

    Article  CAS  PubMed  Google Scholar 

  • He H, Li Y, He LF (2018) The central role of hydrogen sulfide in plant responses to toxic metal stress. Ecotoxicol Environ Saf 157:403–408

    Article  CAS  PubMed  Google Scholar 

  • Horváth E, Pál M, Szalai G, Páldi E, Janda T (2007) Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biol Plant 51:480–487

    Article  Google Scholar 

  • Hossain MA, Bhattacharjee S, Armin S-M, Qian P, Xin W, Li H-Y, Burritt DJ, Fujita M, Tran L-SP (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from H2O2 detoxification and scavenging. Front Plant Sci 6:420

    PubMed  PubMed Central  Google Scholar 

  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238

    Article  CAS  Google Scholar 

  • Huang Z, Chen G, Zeng G, Chen A, Zuo Y, Guo Z, Tan Q, Song Z, Niu Q (2015) Polyvinyl alcohol-immobilized Phanerochaete chrysosporium and its application in the bioremediation of composite-polluted wastewater. J Hazard Mater 289:174–183

    Article  CAS  PubMed  Google Scholar 

  • Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agr Crop Sci 194:193–199

    Article  CAS  Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2007) Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1000

    Google Scholar 

  • Ishibashi Y, Yamaguchi H, Yuasa T, Iwaya-Inoue M, Arima S, Zheng SH (2011) Hydrogen peroxide spraying alleviates drought stress in soybean plants. J Plant Physiol 168:1562–1567

    Article  CAS  PubMed  Google Scholar 

  • Janda T, Szalai G, Leskó K, Yordanova R, Apostol S, Popova LP (2007) Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochemistry 68:1674–1682

    Article  CAS  PubMed  Google Scholar 

  • Janda K, Hideg E, Szalai G, Kovács L, Janda T (2012) Salicylic acid may indirectly influence the photosynthetic electron transport. J Plant Physiol 169:971–978

    Article  CAS  PubMed  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2015) Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul 76:25–40

    Article  CAS  Google Scholar 

  • Jin ZP, Shen JJ, Qiao ZJ, Yang GD, Wang R, Pei YX (2011) Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Commun 414:481–486

    Article  CAS  PubMed  Google Scholar 

  • Jin ZP, Xue SW, Luo YN, Tian BH, Fang HH, Li H, Pei Y (2013) Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem 62:41–46

    Article  CAS  PubMed  Google Scholar 

  • Jin Z, Wang Z, Ma Q, Sun L, Zhang L, Liu Z, Pei Y (2017) Hydrogen sulfide mediates ion fluxes inducing stomatal closure in response to drought stress in Arabidopsis thaliana. Plant Soil 419:141–152

    Article  CAS  Google Scholar 

  • Jorge TF, Tohge T, Wendenburg R, Ramalho JC, Lidon FC, Ribeiro-Barros AI, António C (2019) Salt-stress secondary metabolite signatures involved in the ability of Casuarina glauca to mitigate oxidative stress. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2019.103808

    Article  CAS  Google Scholar 

  • Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Jumali SS, Said IM, Ismail I, Zainal Z (2011) Genes induced by high concentration of salicylic acid in ‘Mitragyna speciosa’. Aus J Crop Sci 5:296

    CAS  Google Scholar 

  • Kaur P, Ghai N, Sangha MK (2009) Induction of thermotolerance through heat acclimation and salicylic acid in brassica species. Afr J Biotechnol 8:619–625

    CAS  Google Scholar 

  • Kaya C, Akram NA, Ashraf M (2019a) Influence of exogenously applied nitric oxide on strawberry (Fragaria× ananassa) plants grown under iron deficiency and/or saline stress. Physiol Plant 165:247–263

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Akram NA, Sürücü A, Ashraf M (2019b) Alleviating effect of nitric oxide on oxidative stress and antioxidant defence system in pepper (Capsicum annuum L.) plants exposed to cadmium and lead toxicity applied separately or in combination. Sci Horticul 255:52–60

    Article  CAS  Google Scholar 

  • Kazemi M, Hadavi E, Hekmati J (2011) Role of salicylic acid in decreases of membrane senescence in cut carnation flowers. Am J Plant Physiol 6:106–112

    Article  CAS  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    Article  CAS  PubMed  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M, Khan MMA (2010) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant 32:121

    Article  CAS  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Khan TA, Fariduddin Q, Yusuf M (2017) Low-temperature stress: is phytohormones application a remedy? Environ Sci Pollut Res 24:21574–21590

    Article  CAS  Google Scholar 

  • Khanam D, Mohammad F (2016) Effect of structurally different plant growth regulators (PGRS) on the concentration, yield, and constituents of peppermint essential oil. Int J Geogr Inf Syst 23:1–10

    Article  Google Scholar 

  • Khanam D, Mohammad F (2018) Plant growth regulators ameliorate the ill effect of salt stress through improved growth, photosynthesis, antioxidant system, yield and quality attributes in Mentha piperita L. Acta Physiol Plant 40:188

    Article  CAS  Google Scholar 

  • Khodary SFA (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Inter J Agr Biol 6:5–8

    CAS  Google Scholar 

  • Knutti R, Rogelj J, Sedláček J, Fischer EM (2016) A scientific critique of the two-degree climate change target. Nat Geosci 9:13

    Article  CAS  Google Scholar 

  • Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot 97:479–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosová K, Prášil IT, Vítámvás P, Dobrev P, Motyka V, Floková K, Trávničková A (2012) Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J Plant Physiol 169:567–576

    Article  PubMed  CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Pandey-Rai S (2018) Enhanced arsenic tolerance and secondary metabolism by modulation of gene expression and proteome profile in Artemisia annua L. after application of exogenous salicylic acid. Plant Physiol Biochem 132:590–602

    Article  CAS  PubMed  Google Scholar 

  • Kunert KJ, Vorster BJ, Fenta BA, Kibido T, Dionisio G, Foyer CH (2016) Drought stress responses in soybean roots and nodules. Front Plant Sci 7:1015

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai D, Mao Y, Zhou H, Li F, Wu M, Zhang J, Xie Y (2014) Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci 225:117–129

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BR, Zhang Q, Park SH, Islam MT, Kim TH (2019) Salicylic acid improves drought-stress tolerance by regulating the redox status and proline metabolism in Brassica rapa. Horticul Environ Biotechnol 60:31–40

    Article  CAS  Google Scholar 

  • Lei Y, Yin C, Li C (2007) Adaptive responses of Populus przewalskii to drought stress and SNP application. Acta Physiol Plant 29:519–526

    Article  CAS  Google Scholar 

  • Li Z (2015) Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings. Plant Signal Behav 10:e1051278

    Article  CAS  Google Scholar 

  • Li ZG, Gong M, Xie H, Yang L, Li J (2012) Hydrogen sulphide donor sodium hydrosulfide induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension cultured cells and involvement of Ca2C and calmodulin. Plant Sci 185–186:185–189

    Article  PubMed  CAS  Google Scholar 

  • Li ZG, Ding XJ, Du PF (2013) Hydrogen sulphide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline. J Plant Physiol 170:741–747

    Article  CAS  PubMed  Google Scholar 

  • Li J, Jia H, Wang J, Cao Q, Wen Z (2014) Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root. Protoplasma 251:899–912

    Article  CAS  PubMed  Google Scholar 

  • Li X, Lawas LMF, Malo R, Glaubitz U, Erban A, Mauleon R, Heuer S, Zuther E, Kopka J, Hincha DK, Jagadish KSV (2015a) Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant Cell Environ 38:2171–2192

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Xie L, Li X (2015b) Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings. J Plant Physiol 177:121–127

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Min X, Zhou ZH (2016a) Hydrogen sulfide: a signal molecule in plant cross-adaptation. Front Plant Sci 7:1621

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhang Y, Zhang X, Peng Y, Merewitz E, Ma X, Huang L, Yan Y (2016b) The alterations of endogenous polyamines and phytohormones induced by exogenous application of spermidine regulate antioxidant metabolism, metallothionein and relevant genes conferring drought tolerance in white clover. Environ Exp Bot 124:22–38

    Article  CAS  Google Scholar 

  • Lisjak M, Srivastava N, Teklic T, Civale L, Lewandowski K, Wilson I, Wood ME, Whiteman M, Hancock JT (2010) A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation. Plant Physiol Biochem 48:931–935

    Article  CAS  PubMed  Google Scholar 

  • Lisjak M, Teklic T, Wilson ID, Wood M, Whiteman M, Hancock JT (2011) Hydrogen sulfide effects on stomatal apertures. Plant Signal Behav 6:1444–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisjak M, Teklic T, Wilson ID, Whiteman M, Hancock JT (2013) Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ 36:1607–1616

    Article  CAS  PubMed  Google Scholar 

  • Liu HT, Liu YY, Pan QH, Yang HR, Zhan JC, Huang WD (2006) Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. J Exp Bot 57:3337–3347

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wu R, Wan Q, Xie G, Bi Y (2007) Glucose-6-phosphate dehydrogenase plays a pivotal role in nitric oxide-involved defense against oxidative stress under salt stress in red kidney bean roots. Plant Cell Physiol 48:511–522

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Dong Y, Xu L, Kong J (2014) Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regul 73:67–78

    Article  CAS  Google Scholar 

  • Liu S, Yang R, Pan Y, Ma M, Pan J, Zhao Y, Cheng Q, Wu M, Wang M, Zhang L (2015) Nitric oxide contributes to minerals absorption, proton pumps and hormone equilibrium under cadmium excess in Trifolium repens L. plants. Ecotoxicol Environ Safety 119:35–46

    Article  CAS  PubMed  Google Scholar 

  • Llusia J, Penuelas J, Munne-Bosch S (2005) Sustained accumulation of methyl salicylate alters antioxidant protection and reduces tolerance of holm oak to heat stress. Physiol Plant 124:353–361

    Article  CAS  Google Scholar 

  • Macomber L, Hausinger RP (2011) Mechanisms of nickel toxicity in microorganisms. Metallomics 3:1153–1162

    Article  CAS  PubMed  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mioto PT, Mercier H (2013) Abscisic acid and nitric oxide signaling in two different portions of detached leaves of Guzmania monostachia with CAM up-regulated by drought. J Plant Physiol 170:996–1002

    Article  CAS  PubMed  Google Scholar 

  • Mishina TE, Lamb C, Zeier J (2007) Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant Cell Environ 30:39–52

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Choudhuri MA (1999) Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biol Plant 42:409–415

    Article  CAS  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. The Plant J 73:91–104

    Article  CAS  PubMed  Google Scholar 

  • Montilla-Bascón G, Rubiales D, Hebelstrup KH, Mandon J, Harren FJ, Cristescu SM, Prats E (2017) Reduced nitric oxide levels during drought stress promote drought tolerance in barley and is associated with elevated polyamine biosynthesis. Sci Rep 7:13311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moshelion M, Altman A (2015) Current challenges and future perspectives of plant and agricultural biotechnology. Trends Biotechnol 33:337–342

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Rahman A, Ansary MM, Watanabe A, Fujita M, Tran LS (2015) Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Sci Rep 5:14078

    Article  PubMed  PubMed Central  Google Scholar 

  • Munir M, Shabbir G (2018) Salicylic acid mediated heat stress tolerance in selected bread wheat genotypes of Pakistan. Pak J Bot 50:2141–2146

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Mur LAJ, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJM, Hebelstrup KH, Gupta KJ (2013) Nitric oxide in plants: An assessment of the current state of knowledge. AoB Plants 5:pls052

    Article  PubMed  CAS  Google Scholar 

  • Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun BG, Yun BW (2019) Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot 161:120–133

    Article  CAS  Google Scholar 

  • Nazar R, Umar S, Khan NA, Sareer O (2015) Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. South Afr J Bot 98:84–94

    Article  CAS  Google Scholar 

  • Nazar R, Iqbal N, Umar S (2017) Heat stress tolerance in plants: action of salicylic acid. In: Salicylic acid: a multifaceted hormone. Springer, Singapore, pp 145–161

    Chapter  Google Scholar 

  • Németh M, Janda T, Horváth E, Páldi E, Szalai G (2002) Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci 162:569–574

    Article  Google Scholar 

  • Ohtake Y, Takahashi T, Komed Y (2000) Salicylic acid induces the expression of a number of receptor-like kinase genes in Arabidopsis thaliana. Plant Cell Physiol 41:1038–1044

    Article  CAS  PubMed  Google Scholar 

  • Pál M, Szalai G, Horváth E, Janda T, Páldi E (2002) Effect of salicylic acid during heavy metal stress. Acta Biol Szeged 46:119–120

    Google Scholar 

  • Pancheva TV, Popova LP, Uzunova AM (1996) Effect of salicylic acid on growth and photosynthesis in barley plants. J Plant Physiol 149:57–63

    Article  CAS  Google Scholar 

  • Panda, SK, Patra HK (2007). Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiologiae Plantarum, 29(6): 567–575

    Article  CAS  Google Scholar 

  • Papenbrock J, Riemenschneider A, Kamp A, Schulz-Vogt HN, Schmidt A (2007) Characterization of cysteine-degrading and H2S-releasing enzymes of higher plants - from the field to the test tube and back. Plant Biol 9:582–588

    Article  CAS  PubMed  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123. https://doi.org/10.3389/fpls.2016.01123

    Article  PubMed  PubMed Central  Google Scholar 

  • Poór P, Szopkó D, Tari I (2012) Ionic homeostasis disturbance is involved in tomato cell death induced by NaCl and salicylic acid. In Vitro Cell Dev Biol Plant 48:377–382

    Article  CAS  Google Scholar 

  • Qiao W, Li C, Fan LM (2014) Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses. Environ Exp Bot 100:84–93

    Article  CAS  Google Scholar 

  • Qin L, Zeng G, Lai C, Huang D, Xu P, Zhang C, Cheng M, Liu X, Liu S, Li B, Yi H (2018) “Gold rush” in modern science: fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord Chem Rev 359:1–31

    Article  CAS  Google Scholar 

  • Rai KK, Rai N, Rai SP (2018a) Response of Lablab purpureus L. to high temperature stress and role of exogenous protectants in mitigating high temperature induced oxidative damages. Mol Biol Rep 45:1375–1395

    Article  CAS  PubMed  Google Scholar 

  • Rai KK, Rai N, Rai SP (2018b) Salicylic acid and nitric oxide alleviate high temperature induced oxidative damage in Lablab purpureus L plants by regulating bio-physical processes and DNA methylation. Plant Physiol Biochem 128:72–88

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plan Theory 8:34

    CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueño MC, Luis A, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romero-Munar A, Baraza E, Gulías J, Cabot C (2019) Arbuscular mycorrhizal fungi confer salt tolerance in giant reed (Arundo donax L.) plants grown under low phosphorus by reducing leaf Na+ concentration and improving phosphorus use efficiency. Front Plant Sci 10:843

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–146

    Article  CAS  Google Scholar 

  • Sahar K, Amin B, Taher NM (2011) The salicylic acid effect on the Salvia officianlis L. sugar, protein and proline contents under salinity (NaCl) stress. J Stress Physiol Biochem 7:80–87

    Google Scholar 

  • Sahay S, Gupta M (2017) An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide 67:39–52

    Article  CAS  PubMed  Google Scholar 

  • Sahay S, Khan E, Gupta M (2019) Nitric oxide and abscisic acid protects against PEG-induced drought stress differentially in brassica genotypes by combining the role of stress modulators, markers and antioxidants. Nitric Oxide 89:81–92

    Article  CAS  PubMed  Google Scholar 

  • Sakhabutdinova AR, Fatkhutdinova DR, Shakirova FM (2004) Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination. App Biochem Microbiol 40:501–505

    Article  CAS  Google Scholar 

  • Sami F, Faizan M, Faraz A, Siddiqui H, Yusuf M, Hayat S (2018) Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide 73:22–38

    Article  CAS  PubMed  Google Scholar 

  • Santisree P, Bhatnagar-Mathur P, Sharma KK (2015) NO to drought-multifunctional role of nitric oxide in plant drought: do we have all the answers? Plant Sci 239:44–55

    Article  CAS  PubMed  Google Scholar 

  • Scuffi D, Alvarez C, Laspina N, Gotor C, Lamattina L, Garcíamata C (2014) Hydrogen sulfide generated by l-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. Plant Physiol 166:2065–2076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sehar Z, Masood A, Khan NA (2019) Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. Environ Exp Bot 161:277–289

    Article  CAS  Google Scholar 

  • Senaratna T, Touchell D, Bunn T, Dixon K (2000) Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  • Senaratna T, Merritt D, Dixon K, Bunn E, Touchell D, Sivasithamparam K (2003) Benzoic acid may act as the functional group in salicylic acid and derivatives in the induction of multiple stress tolerance in plants. Plant Growth Regul 39:77–81

    Article  CAS  Google Scholar 

  • Shakirova FM (2007) Role of hormonal system in the manisfestation of growth promoting and anti-stress action of salicylic acid. In: Hayat S, Ahmad A (eds) A plant hormone. Springer, Dordrecht

    Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant science, 164(3):317–322

    Article  CAS  Google Scholar 

  • Shao R, Wang K, Shangguan Z (2010) Cytokinin-induced photosynthetic adaptability of Zea mays L. to drought stress associated with nitric oxide signal: probed by ESR spectroscopy and fast OJIP fluorescence rise. J Plant Physiol 167:472–479

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Soares C, Sousa B, Martins M, Kumar V, Shahzad B, Thukral AK (2019) Nitric oxide-mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects. Physiol Plant. doi:https://doi.org/10.1111/ppl.13004

  • Shen J, Xing T, Yuan H, Liu Z, Jin Z, Zhang L, Pei Y (2013) Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions. PLoS One 8:e77047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48:127–135

    Article  CAS  Google Scholar 

  • Shi H, Ye T, Zhu JK, Chan Z (2014) Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. J Exp Bot 65:4119–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui MH, Alamri SA, Al-Khaishany MY, Al-Qutami MA, Ali HM, Hala AR, Kalaji HM (2017) Exogenous application of nitric oxide and spermidine reduces the negative effects of salt stress on tomato. Hort Environ Biotechnol 58:537–547

    Article  CAS  Google Scholar 

  • Simontacchi M, Galatro A, Ramos-Artuso F, Santa-Maria GE (2015) Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. Front Plant Sci 6:977

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141

    Article  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:289–297

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Szepesi Á (2005) Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt-and osmotic stress. Acta Biol Szeg 49:123–125

    Google Scholar 

  • Szepesi Á, Csiszár J, Gallé Á, Gémes K, Poór P, Tari I (2008a) Effect of long-term salicylic acid pre-treatment on tomato (Lycopersicon esculentum mill. L.) salt stress tolerance: changes in glutathione S-transferase activities and antocyanin contents. Acta Agron Hung 56:129–138

    Article  CAS  Google Scholar 

  • Szepesi Á, Poór P, Gémes K, Horváth E, Tari I (2008b) Influence of exogenous salicylic acid on antioxidant enzyme activities in the roots of salt stressed tomato plants. Acta Biol Szeg 52:199–200

    Google Scholar 

  • Tahjib-Ul-Arif M, Siddiqui MN, Sohag AAM, Sakil MA, Rahman MM, Polash MAS, Tran LSP (2018) Salicylic acid-mediated enhancement of photosynthesis attributes and antioxidant capacity contributes to yield improvement of maize plants under salt stress. J Plant Growth Regul 37:1318–1330

    Article  CAS  Google Scholar 

  • Tang Y, Sun X, Wen T, Liu M, Yang M, Chen X (2017) Implications of terminal oxidase function in regulation of salicylic acid on soybean seedling photosynthetic performance under water stress. Plant Physiol Biochem 112:19–28

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Niu L, Wei J, Chen X, Chen Y (2019) Phosphorus limitation improved salt tolerance in maize through tissue mass density increase, Osmolytes accumulation, and Na+ uptake inhibition. Front Plant Sci 10:856. https://doi.org/10.3389/fpls.2019.00856

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Hydrogen peroxide- and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants. J Plant Physiol 166:1904–1913

    Article  CAS  PubMed  Google Scholar 

  • Tari I (2002) Acclimation of tomato plants to salinity stress after a salicylic acid pretreatment. Acta Biol Szeg 46:55–56

    Google Scholar 

  • Tari I, Simon LM, Deér KA, Csiszár J, Bajkán SZ, Kis GY, Szepesi A (2004) Influence of salicylic acid on salt stress acclimation of tomato plants: oxidative stress responses and osmotic adaptation. Acta Physiol Plant 26:237

    Google Scholar 

  • Tari I, Kiss G, Deer AK, Csiszár J, Erdei L, Gallé Á, Simon LM (2010) Salicylic acid increased aldose reductase activity and sorbitol accumulation in tomato plants under salt stress. Biol Plant 54:677–683

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornton PK, Ericksen PJ, Herrero M, Challinor AJ (2014) Climate variability and vulnerability to climate change: a review. Glob Chang Biol 20:3313–3328

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian X, Lei Y (2006) Nitric oxide treatment alleviates drought stress in wheat seedlings. Biol Plant 50:775–778

    Article  CAS  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with pseudomonas syringae pv. Tomato DC3000. Mol Plant-Mic Interac 20:955–965

    Article  CAS  Google Scholar 

  • Wahid A, Perveen M, Gelani S, Basra SM (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283–294

    Article  CAS  PubMed  Google Scholar 

  • Wang LJ, Li SL (2006) Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci 170:685–694

    Article  CAS  Google Scholar 

  • Wang YS, Yang ZM (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46:1915–1923

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  CAS  PubMed  Google Scholar 

  • Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang GF, Seabolt S, Hamdoun S, Ng G, Park J, Lu H (2011) Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis. Plant Physiol 156:1508–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Yuan X, Wu Y, Huang H, Zeng G, Liu Y, Wang X, Lin N, Qi Y (2013) Adsorption characteristics and behaviors of graphene oxide for Zn (II) removal from aqueous solution. Appl Surf Sci 279:432–440

    Article  CAS  Google Scholar 

  • Wang Y, Wen T, Huang Y, Guan Y, Hu J (2018) Salicylic acid biosynthesis inhibitors increase chilling injury to maize (Zea mays L.) seedlings. Plant Growth Regul 86:11–21

    Article  CAS  Google Scholar 

  • Wani W, Masoodi KZ, Zaid A, Wani SH, Shah F, Meena VS, Mosa KA (2018) Engineering plants for heavy metal stress tolerance. Rend Lin Sci Fis e Nat 29:709–723

    Article  Google Scholar 

  • Weast RC (1984) CRC handbook of chemistry and physics, 64th edn. CRC Press, Boca Raton

    Google Scholar 

  • Xing H, Tan L, An L, Zhao Z, Wang S, Zhang C (2004) Evidence for the involvement of nitric oxide and reactive oxygen species in osmotic stress tolerance of wheat seedlings: inverse correlation between leaf abscisic acid accumulation and leaf water loss. Plant Growth Regul 42:61–68

    Article  CAS  Google Scholar 

  • Xu J, Wang W, Yin H, Liu X, Sun H, Mi Q (2010) Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321–330

    Article  CAS  Google Scholar 

  • Xu J, Wang W, Sun J, Zhang Y, Ge Q, Du L, Liu X (2011) Involvement of auxin and nitric oxide in plant cd-stress responses. Plant Soil 346:107

    Article  CAS  Google Scholar 

  • Yang ZM, Wang J, Wang SH, Xu LL (2003) Salicylic acid-induced aluminium tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta 217:168–174

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Cao S, Zheng Y, Jiang Y (2012) Combined salicyclic acid and ultrasound treatments for reducing the chilling injury on peach fruit. J Agr food Chem 60:1209–1212

    Article  CAS  Google Scholar 

  • Yang L, Ji J, Harris-Shultz KR, Wang H, Wang H, Abd-Allah EF, Luo Y, Hu X (2016) The dynamic changes of the plasma membrane proteins and the protective roles of nitric oxide in Rice subjected to heavy metal cadmium stress. Front Plant Sci 7:190. https://doi.org/10.3389/fpls.2016.00190

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye S, Zeng G, Wu H, Zhang C, Dai J, Liang J, Yu J, Ren X, Yi H, Cheng M, Zhang C (2017) Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol 37:1062–1076

    Article  CAS  PubMed  Google Scholar 

  • Yordanov I, Velikova V, Tsone V (2000) Plant response to drought, acclimation and stress tolerance. Photosynthetica 30:171–186

    Article  Google Scholar 

  • Yu CC, Hung KT, Kao CH (2005) Nitric oxide reduces cu toxicity and cu-induced NH4+ accumulation in rice leaves. J Plant Physiol 162:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Yuan S, Lin HH (2008) Role of salicylic acid in plant abiotic stress. Zeits für Nat 63:313–320

    CAS  Google Scholar 

  • Yuan S, Shen X, Kevil CG (2017) Beyond a Gasotransmitter: hydrogen sulfide and polysulfide in cardiovascular health and immune response. Antiox Redox Signal 27:634–653

    Article  CAS  Google Scholar 

  • Zaid A, Mohammad F, Wani SH, Siddique KM (2019) Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotoxicol Environ Saf 180:575–587

    Article  CAS  PubMed  Google Scholar 

  • Zanganeh R, Jamei R, Rahmani F (2018) Impacts of seed priming with salicylic acid and sodium hydrosulfide on possible metabolic pathway of two amino acids in maize plant under lead stress. Mol Biol Res Comm 7:83

    CAS  Google Scholar 

  • Zhang WN, Chen WL (2011) Role of salicylic acid in alleviating photochemical damage and autophagic cell death induction of cadmium stress in Arabidopsis thaliana. Photochem Photobiol Sci 10:947–955

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP (2008) Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol 50:1518–1529

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wang MJ, Hu LY, Wang SH, Hu KD, Bao LJ, Luo JP (2010a) Hydrogen sulfide promotes wheat seed germination under osmotic stress. Russ J Plant Physiol 57(4):532–539

    Article  CAS  Google Scholar 

  • Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL (2010b) Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integ Plant Biol 52:556–567

    Article  CAS  Google Scholar 

  • Zhang F, Zhang H, Xia Y, Wang G, Xu L, Shen Z (2011) Exogenous application of salicylic acid alleviates cadmium toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa. Plant Cell Rep 30:1475–1483

    Article  CAS  PubMed  Google Scholar 

  • Zhao HJ, Lin XW, Shi HZ, Chang SM (1995) The regulating effect of phenolic compounds on the physiological characteristics and yield of soybeans. Acta Agron Sin 21:351–355

    Google Scholar 

  • Zhao Z, Chen G, Zhang C (2001) Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Func Plant Biol 28:1055–1061

    Article  CAS  Google Scholar 

  • Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Lai C, Zhang C, Zeng G, Huang D, Cheng M, Hu L, Xiong W, Chen M, Wang J, Yang Y, Jiang L (2018) Semiconductor/boron nitride composites: synthesis, properties, and photocatalysis applications. App Cata B 238:6–18

    Article  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Dai S, Chen S (2012a) The stomata frontline of plant interaction with the environment perspectives from hormone regulation. Front Biol 7:96–112

    Article  CAS  Google Scholar 

  • Zhu XF, Jiang T, Wang ZW et al (2012b) Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J Hazard Mater 239:302–307

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the host institution Aligarh Muslim University, Aligarh 202002, India and our workplace at Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh for providing us seat to work. We apologize to those authors whose work could not be cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbu Zaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadiq, Y., Zaid, A., Khan, M.M.A. (2020). Adaptive Physiological Responses of Plants under Abiotic Stresses: Role of Phytohormones. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I. Springer, Singapore. https://doi.org/10.1007/978-981-15-2156-0_28

Download citation

Publish with us

Policies and ethics