Skip to main content
Log in

Involvement of auxin and nitric oxide in plant Cd-stress responses

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Cadmium (Cd) toxicity inhibited the seedling growth while inducing the occurrences of lateral roots (LR) and adventitious roots (AR). Further study indicated that auxin and nitric oxide (NO) are involved in the processes. In this study, we chose model plant Arabidopsis thaliana and Cd-hyperaccumulator Solanum nigrum as material to examine the involvement of Cd-induced auxin redistribution in NO accumulation in plants and the effect of NO on Cd accumulation. For this aim, the histochemical staining, NO fluorescence probe (DAF-2DA) detections combined with the pharmacological study were used in this study. By using DR5:GUS staining analysis combined with NO fluorescence probe (DAF-2DA) detection, we found that Cd-induced NO accumulation is at least partly due to auxin redistribution in plants exposure to Cd. Supplementation with SNP donor S-nitrosoglutathione (GSNO) increased the number of LR and AR. In contrast, NO-scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl-3-oxide (cPTIO) reversed the effects of NO on modulating root system architecture and Cd accumulation. These results suggest that manipulation of the NO level is an effective approach to improve Cd tolerance in plants by modulating the development of LR and AR, and provide insights into novel strategies for phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AR:

Adventitious root

CAT:

Catalase

cPTIO:

2-(4-carboxyphenyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl- 3-oxide

DAB:

3-diaminobenzidine

DAF-2 DA:

4,5-diaminofluorescein diacetate

DCFH-DA:

2,7-dichlorfluorescein-diacetate

GSNO:

Sodium nitroprusside

GUS:

3-glucuronidase

IAA:

Indole acetic acid

ICP-MS:

Inductively coupled plasma-mass spectroscopy

LR:

Lateral root

NBT:

Nitroblue tetrazolium

NPA:

N-1- naphthylphthalamic acid

NO:

Nitric oxide

PR:

Primary root

PVP:

Polyvinylpyrrolidone

ROS:

Reactive oxygen species

SOD:

Super- oxide dismutase

TIBA:

2,3,5-triiodobenzoic acid

X-Gluc:

5-bromo-4-chloro- 3-indolyl-β-D-glucuronic acid cyclohexyl-ammonium

References

  • Baker CJ, Mock NM (1994) An improved method for monitoring cell death in cell suspension and leaf disc Plant Soil assays using Evans blue. Plant Cell Tissue Org 39:7–12

    Article  Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A, Rodriguez-Serrano M, Esteban FJ, Fernandez-Ocana A, Chaki M, Romero-Puertas MC, Valderrama R, Sandalio LM, del Rio LA (2006) Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under Cd stress. J Exp Bot 57:1785–1794

    Article  PubMed  CAS  Google Scholar 

  • Bartha B, Kolbert Z, Erdei L (2005) Nitric oxide production induced by heavy metals in Brassica juncea L. Czern. and Pisum sativum L. Acta Biol Szegediensis 49:9–12

  • Berkelaar E, Hale B (2000) The relationship between root morphology and cadmium accumulation in seedlings of two durum wheat cultivars. Can J Bot 78:81–387

    Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou JP, Pugin A, Wendehenne D (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315

    Article  PubMed  CAS  Google Scholar 

  • Correa-Aragunde NM, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    Article  PubMed  CAS  Google Scholar 

  • De Michele R, Vurro E, Rigo C, Costa A, Elviri L, Di Valentin M, Careri M, Zottini M, Sanità di Toppi L, Lo Schiavo F (2009) Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150:217–228

    Article  PubMed  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Throne TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Errabii T, Gandonou CB, Essalmani H, Abrini J, Idaomar M, Senhaji NS (2007) Effects of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures. Acta Physiol Plant 29:95–102

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif. Aes. Bull. 347. University of California Agricultura1 Experiment Station, Berkeley, pp 1–39

    Google Scholar 

  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238

    Article  CAS  Google Scholar 

  • Kolberz Z, Bartha B, Erdei L (2008) Exogenous auxin-induced NO synthesis is nitrate reductase-associated in Arabidopsis thaliana root primordial. J Plant Physiol 165:967–975

    Article  Google Scholar 

  • Kopyra M, Gwózdz EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnusat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  PubMed  CAS  Google Scholar 

  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • Libourel IGL, Bethke PC, De Michele R, Jones RL (2006) Nitric oxide gas stimulates germination of dormant Arabidopsis seeds: use of a flow-through apparatus for delivery of nitric oxide. Planta 223:813–820

    Article  PubMed  CAS  Google Scholar 

  • Lozano-Juste J, León J (2010) Enhanced ABA-mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-dependent NO Biosynthesis in Arabidopsis. Plant Physiol. doi:10.1104/pp.109.148023

    PubMed  Google Scholar 

  • Lu LL, Tian SK, Yang XE, Wang XC, Brown P, Li TQ, He ZL (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213

    Article  PubMed  CAS  Google Scholar 

  • Macek T, Mackova M, Pavlikova D, Szakova J, Truksa M, Singh Cundy A, Kotrba P, Yancey N, Scouten WH (2002) Accumulation of cadmium by transgenic tobacco. Acta Biotechnol 22:101–106

    Article  CAS  Google Scholar 

  • Martin M, Colman MJR, Gomez-Casati DF, Lamattina L, Zabaleta EJ (2009) Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants. FEBS Lett 583:542–548

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  PubMed  CAS  Google Scholar 

  • Parker DR, Norvell WA, Chaney RL (1995) Geochem-PC: a chemical speciation program for IBM compatibles. In: Loeppert RH, Schwab AP, Goldberg S (eds) Chemical equilibrium and reaction models. Soil Science Society of America, Madison, pp 253–269

    Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  PubMed  CAS  Google Scholar 

  • Ramel F, Sulmon C, Bogard M, Couee I, Gouesbet G (2009) Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol 9:28–45

    Article  PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, del Río LA, Sandalio LM (2009) Cellular Response of pea plants to cadmium toxicity: cross-talk between reactive oxygen species, nitric oxide and calcium. Plant Physiol 150:229–243

    Article  PubMed  Google Scholar 

  • Schmidt W, Tittel J, Schikora A (2000) Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiol 122:1109–1118

    Google Scholar 

  • Singh HP, Batish DR, Kaur G, Arora K, Kohli RK (2008) Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot 63:158–167

    Article  CAS  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    Article  PubMed  CAS  Google Scholar 

  • Sun BT, Jing Y, Chen KM, Song LL, Chen FJ, Zhang LX (2007) Protective effect of nitric oxide on iron deficiencyinduced oxidative stress in maize (Zea mays). J Plant Physiol 164:536–543

    Article  PubMed  CAS  Google Scholar 

  • Tewari RK, Kim SY, Hahn EJ, Paek KY (2008) Involvement of nitric oxide-induced NADPH oxidase in adventitious root growth and antioxidant defense in Panax ginseng. Plant Biotechnol Rep 2:113–122

    Article  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle T (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    Article  PubMed  CAS  Google Scholar 

  • Vital SA, Fowler RW, Virgen A, Gossett DR, Banks SW, Rodriguez J (2008) Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. Environ Exp Bot 62:60–68

    Article  CAS  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212

    Article  CAS  Google Scholar 

  • Wang HH, Liang XL, Wan Q, Wang XM, Bi YR (2009) Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta 230:293–307

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Yin HX, Liu XJ, Yuan T, Mi Q, Yang LL, Xie ZX, Wang WY (2009a) Nitric oxide alleviates Fe deficiency-induced stress in Solanum nigrum. Biol Plant 53:784–788

    Article  CAS  Google Scholar 

  • Xu J, Yin HX, Li X (2009b) Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep 28:325–333

    Article  CAS  Google Scholar 

  • Xu J, Wang WY, Yin HX, Liu XJ, Sun H, Mi Q (2010) Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321–330

    Article  CAS  Google Scholar 

  • Yang JD, Yun JY, Zhang TH, Zhao HL (2006) Presoaking with nitric oxide donor SNP alleviates heat shock damages in mung bean leaf discs. Bot Stud 47:129–136

    CAS  Google Scholar 

  • Zhang LP, Mehta SK, Liu ZP, Yang ZM (2008) Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell Physiol 49:411–419

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Zhang H, Qin R, Jiang W, Liu D (2009) Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia faba L. Ecotoxicology 18:814–823

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Major Special Project on New Varieties Cultivation for Transgenic Organisms (2009ZX08009-130B), the National Basic Research Program of China (2009CB421102, 2009CB118305), the Science and Technology Key Project of Education Ministry, P. R. China (209133), the National Key Technologies R&D Program of China (2009BADA3B04) and the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-EW-Q-25, KZCX2-YW-447).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Xu or Xiaojing Liu.

Additional information

Responsible Editor: Juan Barcelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Wang, W., Sun, J. et al. Involvement of auxin and nitric oxide in plant Cd-stress responses. Plant Soil 346, 107–119 (2011). https://doi.org/10.1007/s11104-011-0800-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0800-4

Keywords

Navigation