Skip to main content
Log in

Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

Effects of exogenous salicylic acid (SA) on plant growth, contents of Na, K, Ca and Mg, activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase (CAT), and contents of ascorbate and glutathione were investigated in tomato (Lycopersicon esculentum L.) plants treated with 100 mM NaCl. NaCl treatment significantly increased H2O2 content and lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances (TBARS). A foliar spray of 1 mM SA significantly decreased lipid peroxidation caused by NaCl and improved the plant growth. This alleviation of NaCl toxicity by SA was related to decreases in Na contents, increases in K and Mg contents in shoots and roots, and increases in the activities of SOD, CAT, GPX and DHAR and the contents of ascorbate and glutathione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

APX:

ascorbate peroxidase

ASC:

reduced ascorbate

CAT:

catalase

DHA:

dehydroascorbate

DHAR:

dehydroascorbate reductase

EDTA:

ethylenediaminetetra-acetic acid

GPX:

guaiacol peroxidase

GR:

glutathione reductase

GSH:

reduced glutathione

GSSG:

oxidized glutathione

NBT:

nitroblue tetrazolium

PVP:

polyvinylpyrrolidone

RH:

relative humidity

ROS:

reactive oxygen species

SA:

salicylic acid

SOD:

superoxide dismutase

TBARS:

thiobarbituric acid reactive substances

References

  • Arfan, M., Athar, H.R., Ashraf, M.: Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress?-J. Plant Physiol. 164: 685–694, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Cakmak, I., Marschner, H.: Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascrobate peroxidase, and glutathione reductase in bean leaves.-Plant Physiol. 98: 1222–1227, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Ding, C.-K., Wang, C., Gross, K., Smith, D.: Jasmonate and salicylate induce expression of pathogenesis-related protein genes and increase resistance to chilling injury in tomato fruit.-Planta 214: 895–901, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Egley, G.H., Paul, R.N., Vaughn, K.C., Duke, S.O.: Role of peroxidase in the development of water impermeable seed coats in Sida spinosa L.-Planta 157: 224–232, 1983.

    Article  CAS  Google Scholar 

  • El-Tayeb, M.: Response of barley grains to the interactive effect of salinity and salicylic acid.-Plant Growth Regul. 45: 215–224, 2005.

    Article  CAS  Google Scholar 

  • Feranda, F., Arlete, S., Isabel, S., Salema, R.: Effects of long-term salt stress on antioxidant defence systems, leaf water relations and chloroplast ultrastructure of potato plants.-Ann. appl. Biol. 145: 185–192, 2004.

    Article  Google Scholar 

  • Foyer, C.H., Halliwell, B.: The presence of glutathione and glutathione reductase in chloroplasts. a proposal role in ascorbic acid metabolism.-Planta 133: 21–25, 1976.

    Article  Google Scholar 

  • Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E.G., Cicek, N.: Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity.-J. Plant Physiol. 164: 728–736, 2007.

    Article  PubMed  CAS  Google Scholar 

  • He, Y., Liu, Y., Cao, W., Hua, M., Xu, B., Huang, B.: Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass.-Crop Sci. 45: 988–995, 2005.

    Article  CAS  Google Scholar 

  • Hernández, J.A., Campillo, A., Jiménez, A., Alarcón, J.J., Sevilla, F.: Response of antioxidant systems and leaf water relations to NaCl stress in pea plants.-New Phytol. 141: 241–251, 1999.

    Article  Google Scholar 

  • Hodges, D., Andrews, C., Johnson, D., Hamilton, R.: Antioxidant compound responses to chilling stress in differentially sensitive inbred maize 23 lines.-Physiol. Plant. 98: 685–692, 1996.

    Article  CAS  Google Scholar 

  • Janda, T., Szalai, G., Rioa-Gonzalez, K., Veisa, O., Páldi, E.: Comparative study of frost tolerance and antioxidant activity in cereals.-Plant Sci. 164: 301–306, 2003.

    Article  CAS  Google Scholar 

  • Mahdavian, K., Kalantari, K.M., Ghorbanli, M., Torkzade, M.: The effects of salicylic acid on pigment contents in ultraviolet radiation stressed pepper plants.-Biol. Plant. 52: 170–172, 2008.

    Article  CAS  Google Scholar 

  • Mauch-Mani, B., Métraux, J.: Salicylic acid and systemic acquired resistance to pathogen attack.-Ann. Bot. 82: 535–540, 1998.

    Article  CAS  Google Scholar 

  • Metwally, A., Finkerneier, I., Georgi, M., Dietz, K.: Salicylic acid alleviates the cadmium toxicity in barley seedlings.-Plant Physiol. 132: 272–281, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide scanvenged by ascorbated specific peroxidase in spinach chloroplast.-Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Patterson, B., MacRae, E., Ferguson, I.: Estimation of hydrogen peroxide in plant extracts using titanium (IV).-Anal. Biochem. 139: 487–492, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Q., Bao, Z., Zhu, Z., Ying, Q., Qian, Q.: Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L.-Plant Growth Regul. 48: 127–135, 2006.

    Article  CAS  Google Scholar 

  • Silva, C., Martínez, V., Carvajal, M.: Osmotic versus toxic effects of NaCl on pepper plants.-Biol. Plant. 52: 72–79, 2008.

    Article  CAS  Google Scholar 

  • Stevens, J., Senaratna, T., Sivasithamparam, K.: Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilization.-Plant Growth Regul. 49: 77–83, 2006.

    CAS  Google Scholar 

  • Takahashi, M.A., Asada, K.: Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids.-Arch. Biochem. Biophys. 226: 558–566, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Vlachaki, M.T., Meyn, R.E.: Astro research fellowship: the role of bcL-2 and glutathione in an antioxidant pathway to prevent radiation-induced apoptosis.-Int. J. Radiat. Oncol. Biol. Phys. 42: 185–190, 1998.

    PubMed  CAS  Google Scholar 

  • Zhu, J.K.: Plant salt tolerance.-Trends Plant Sci. 6: 66–71, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Z.J., Gerendas, J., Bendixen, R., Schinner, K., Tabrizi, H., Sattelmacher, B., Hansen, U.P.: Different tolerance to light stress in NO3 and NH4 +-grown Phaseolus vulgaris L.-Plant Biol. 2: 558–570, 2000.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. J. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Zhu, Z.J. Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum . Biol Plant 52, 792–795 (2008). https://doi.org/10.1007/s10535-008-0155-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-008-0155-8

Additional key words

Navigation