Skip to main content

New Age Agricultural Bioinputs

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

The use of soil conditioners and biofertilizers is vital in modern agriculture. Currently, the increased prices of petroleum substances affected the supply and price of common nitrogen fertilizers like urea. The development in biofertilizer sector signifies the utilization of nitrogen fixer-based biofertilizers in comparison with Azospirillum, Azotobacter, and Rhizobium bioinputs. The unpredictable monsoon, global warming, gap of rain after sowing of seed during the rainy period, and loss of yield due to increased temperature are the major obstructions resulting to a major economic loss. The environmental variation and ever-increasing food demand necessitate the application of additional bioinputs except for nitrogen fixers and phosphate solubilizers to augment soil fertility. Phosphorous is among the essential plant macronutrients after nitrogen. There are phosphate-solubilizing bacteria and fungi which solubilize the rock phosphate, making it available to plants. However, significant phosphate is immobilized in natural organic form, so to recycle it, the exploitation of a phytase producer is the right solution. The application of ACC deaminase-producing microbes is a significant and economic solution for farmers to fight drought. The upkeep of soil productivity by utilizing conventional bioinputs turned out to be inadequate. Current findings proved that protozoans play an essential function in sustaining soil richness and mineralizing nutrients. With this, this article sheds light on modern and novel bioinputs, which are needed in the current era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adhya TK, Kumar N, Reddy G et al (2015) Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Curr Sci 108(7):1280–1287

    CAS  Google Scholar 

  • Aiba S, Humphrey AE, Millis NF (1973) Scale-up. In: Biochemical engineering, 2nd edn. Academic, New York, pp 195–217

    Google Scholar 

  • Angel R, Tamim NM, Applegate TJ, Dhandu AS, Ellestad LE (2002) Phytic acid chemistry: influence on phytin-phosphorus availability and phytase efficacy. J Appl Poult Res 11:471–480

    Article  CAS  Google Scholar 

  • Ariza A, Moroz OV, Blagova EV et al (2013) Degradation of phytate by the 6-phytase from Hafnia alvei: a combined structural and solution study. PLoS One 8(5):e65062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azam F, Fenchel T, Field JG (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 20:257–263

    Article  Google Scholar 

  • Bakthavatchalu S, Thiam B, Lokanath CK (2013) Partial purification and characterization of phytases from newly isolated Pseudomonas aeruginosa. Asiat J Biotechnol Resour 4:7–12

    Google Scholar 

  • Baldi BG, Scott JJ, Everard JD et al (1988) Localization of constitutive phytases in lily pollen and properties of the pH 8 form. Plant Sci 56:137–147

    Article  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI (2007) Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot 24:1–11

    Google Scholar 

  • Bernard C, Rassoulzadegan F (1990) Bacteria or microflagellates as a major food source for marine ciliates: possible implications for the microzooplankton. Mar Ecol Prog Ser 64(1):147–155

    Article  Google Scholar 

  • Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition, a challenge for molecular breeding. J Zhejiang Univ Sci B 9:165–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162(3):617–631

    Article  PubMed  Google Scholar 

  • Bonkowski M, Brandt F (2002) Do soil protozoa enhance plant growth by hormonal effects? Soil Biol Biochem 34(11):1709–1715

    Article  CAS  Google Scholar 

  • Brinch-Pedersen H, Sørensen LD, Holm PB (2002) Engineering crop plants: getting a handle on phosphate. Trends Plant Sci 7:118–125

    Article  CAS  PubMed  Google Scholar 

  • Bünemann EK (2008) Enzyme additions as a tool to assess the potential bioavailability of organically bound nutrients. Soil Biol Biochem 40:2116–2129

    Article  CAS  Google Scholar 

  • Cao L, Wang L, Yang W et al (2007) Application of microbial phytase in fish feed. Enzyme Microb Technol 40:497–507

    Article  CAS  Google Scholar 

  • Casey A, Walsh G (2004) Identification and characterization of a phytase of potential commercial interest. J Biotechnol 110:313–322

    Article  CAS  PubMed  Google Scholar 

  • Choi YM, Suh HJ, Kim JM (2001) Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J Protein Chem 20:287–292

    Article  CAS  PubMed  Google Scholar 

  • Chrzanowski TH, Šimek K (1990) Prey-size selection by freshwater flagellated protozoa. Limnol Oceanogr 35(7):1429–136s

    Article  Google Scholar 

  • D’Silva CG, Bae HD, Yanke LJ et al (2000) Localization of phytase in Selenomonas ruminantium and Mitsuokella multiacidus by transmission electron microscopy. Can J Microbiol 46:391–395

    Article  PubMed  Google Scholar 

  • Davis PG, Sieburth JM (1984) Estuarine and oceanic microflagellate predation of actively growing bacteria: estimation by frequency of dividing-divided bacteria. Mar Ecol Prog Ser 19(3):237–246

    Article  Google Scholar 

  • De Angelis M, Gallo G, Corbo MR et al (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87:259–270

    Article  PubMed  CAS  Google Scholar 

  • Djordjevic S, Djukic D, Govedarica M et al (2003) Effects of chemical and physical soil properties on activity phosphomonoesterase. Acta Agric Serbica 8:3–10

    Google Scholar 

  • Duan J, Müller KM, Charles TC (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microbial Ecol 57:423–436

    Article  CAS  Google Scholar 

  • Eccleston-Parry JD, Leadbeater BS (1994a) A comparison of the growth kinetics of six marine heterotrophic nanoflagellates fed with one bacterial species. Mar Ecol Prog Ser 105:167–177

    Article  Google Scholar 

  • Eccleston-Parry JD, Leadbeater BS (1994b) The effect of long-term low bacterial density on the growth kinetics of three marine heterotrophic nanoflagellates. J Exp Mar Biol Ecol 177:219–233

    Article  Google Scholar 

  • Ekelund F, Rønn R (1994) Notes on protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amoebae and their ecology. FEMS Microbiol Rev 15(4):321–353

    Article  CAS  PubMed  Google Scholar 

  • Escobin-Mopera L, Ohtani M, Sekiguchi S et al (2012) Purification and characterization of phytase from Klebsiella pneumoniae 9-3B. J Biosci Bioeng 113:562–567

    Article  CAS  PubMed  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244(1–2):221–230

    Article  CAS  Google Scholar 

  • Farhat A, Chouayekh H, Farhatben M et al (2008) Gene cloning and characterization of a thermostable phytase from Bacillus subtilis US417 and assessment of its potential as a feed additive in comparison with a commercial enzyme. Mol Biotechnol 64:1234–1245

    Google Scholar 

  • Farouk AE, Greiner R, Hussain ASM (2012) Purification and properties of a phytate-degrading enzyme produced by Enterobacter sakazakii ASUIA279. J Biotechnol Biodivers 3:1–9

    Article  CAS  Google Scholar 

  • Findenegg GR, Nelemans JA (1993) The effect of phytase on the availability of P from myo-inositol hexaphosphate (phytate) for maize roots. Plant Soil 154:189–196

    Article  CAS  Google Scholar 

  • Finlayson SA, Foster KR, Reid DM (1991) Transport and metabolism of 1-aminocyclopropane-carboxylic acid in sunflower (Helianthus annuus L.) seedlings. Plant Physiol 96:1360–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • First MR, Park NY, Berrang ME (2012) Ciliate ingestion and digestion: flow cytometric measurements and regrowth of a digestion-resistant Campylobacter jejuni. J Eukaryot Microbiol 59:12–19

    Article  PubMed  Google Scholar 

  • Fitriatin BN, Joy B, Subroto T (2008) The influence of organic phosphorous substrate on phosphatase activity of soil microbes. In: Proceedings of international seminar on chemistry. 2008 Oct 30–31. Universitas Padjadjaran, Jatinangor

    Google Scholar 

  • Frias J, Doblado R, Antezana JR et al (2003) Inositol phosphate degradation by the action of phytase enzyme in legume seeds. Food Chem 81:233–239

    Article  CAS  Google Scholar 

  • Fu S, Sun J, Qian L et al (2008) Bacillus phytases: present scenario and future perspectives. Appl Biochem Biotechnol 151:1–8

    Article  CAS  PubMed  Google Scholar 

  • George TS, Richardson AE, Hadobas PA et al (2004) Characterization of transgenic Trifolium subterraneum L. which expresses phyA and releases extracellular phytase: growth and P nutrition in laboratory media and soil. Plant Cell Environ 27:1351–1361

    Article  CAS  Google Scholar 

  • George TS, Simpson RJ, Hadobas PA et al (2005) Expression of a fungal phytase gene in Nicotiana tabacum improves phosphorus nutrition of plants grown in amended soils. Plant Biotechnol J 3:129–140

    Article  CAS  PubMed  Google Scholar 

  • George TS, Simpson RJ, Gregory PJ et al (2007) Differential interaction of Aspergillus niger and Peniophora lycii phytases with soil particles affects the hydrolysis of inositol phosphates. Soil Biol Biochem 39:793–803

    Article  CAS  Google Scholar 

  • Gibson DM (1987) Production of extracellular phytase from Aspergillus ficuum on starch media. Biotechnol Lett 9:305–310

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Goldman JC, Caron DA (1985) Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. Deep-Sea Res 32:899–915

    Article  Google Scholar 

  • Goldman JC, Caron DA, Andersen OK (1985) Nutrient cycling in a microflagellate food chain. I. Nitrogen dynamics. Mar Ecol Prog Ser 24:231–242

    Article  CAS  Google Scholar 

  • Greiner R, Sajidan I (2008) Production of D-myo-inositol (1, 2, 4, 5, 6) pentakisphosphate using alginate-entrapped recombinant Pantoea agglomerans glucose-1-phosphatase. Braz Arch Biol Technol 51:235–246

    Google Scholar 

  • Greiner R, Konietzny U, Jany KD (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303:107–113

    Article  CAS  PubMed  Google Scholar 

  • Greiner R, Lim BL, Cheng C (2007) Pathway of phytate dephosphorylation by β-propeller phytases of different origins. Can J Microbiol 53:488–495

    Article  CAS  PubMed  Google Scholar 

  • Griffiths AJ (1970) Encystment in amoebae. Adv Microb Physiol 4:105–120

    Article  CAS  Google Scholar 

  • Griffiths BS, Bardgett RD (1997) Interactions between microbe-feeding invertebrates and Soil Microorganisms. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 165–182

    Google Scholar 

  • Guimarães LH, Terenzi HF, Jorge JA et al (2004) Characterization and properties of acid phosphatases with phytase activity produced by Aspergillus caespitosus. Biotech Appl Biochem 40:201–207

    Article  Google Scholar 

  • Guinel FC (2015) Ethylene, a hormone at the center-stage of nodulation. Front Plant Sci 6:1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta RK, Gangoliya SS, Singh NK (2015) Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol 52:676–684

    Article  CAS  PubMed  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ et al (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    CAS  Google Scholar 

  • Haefner S, Knietsch A, Scholten E et al (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68:588–597

    Article  CAS  PubMed  Google Scholar 

  • Hao X, Cho CM, Racz GJ et al (2002) Chemical retardation of phosphate diffusion in an acid soil as affected by liming. Nutr Cycle Agroecosyst 64:213–224

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U et al (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hayes JE, Richardson AE, Simpson RJ (1999) Phytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume species. Aust J Plant Physiol 26:801–809

    CAS  Google Scholar 

  • Hayes J, Simpson R, Richardson A (2000) The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant Soil 220:165–174

    Article  CAS  Google Scholar 

  • Heaton K, Drinkall J, Minett A et al (2001) Amoeboid grazing on surface associated prey. In: Gilbert P, Allison DG, Brading M et al (eds) Biofilm community interactions: chance or necessity? Bioline Press, Cardiff, pp 293–301

    Google Scholar 

  • Hegeman CE, Grabau EA (2001) A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol 126:1598–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbert D (1956) Stoichiometric aspects of microbial growth. In: Evans C, Melling J (eds) Continuous culture 6: applications and new field, vol 6. Ellis Horword, Chichester, pp 1–30

    Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1- aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    CAS  Google Scholar 

  • Howson S, Davis R (1983) Production of phytate hydrolyzing enzymes by some fungi. Enzym Microb Technol 5:377–382

    Article  CAS  Google Scholar 

  • Hsiao A (2000) Effect of water deficit on morphological and physiological characterizes in rice (Oryza sativa). J Agric Res 3:93–97

    Google Scholar 

  • Huang H, Shi P, Wang Y (2009) Diversity of beta-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. Appl Environ Microbiol 75:1508–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huws SA, McBain AJ, Gilbert P (2005) Protozoan grazing and its impact upon population dynamics in biofilm communities. J Appl Microbiol 98:238–244

    Article  CAS  PubMed  Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A et al (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant growth-promoting effect. Microbiology 148:2097–2109

    Article  CAS  PubMed  Google Scholar 

  • Iriberri J, Ayo B, Santamaria E (1995) Influence of bacterial density and water temperature on the grazing activity of two freshwater ciliates. Freshw Biol 33:223–231

    Article  Google Scholar 

  • Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 40:1019–1025

    Article  CAS  Google Scholar 

  • James MR, Hall JA (1995) Planktonic ciliated protozoa: their distribution and relationship to environmental variables in a marine coastal ecosystem. J Plankton Res 17:659–683

    Article  Google Scholar 

  • Jassey VE, Shimano S, Dupuy C et al (2012) Characterizing the feeding habits of the testate amoebae Hyalosphenia papilio and Nebela tincta along a narrow “fen-bog” gradient using digestive vacuole content and 13C and 15N isotopic analyses. Prosit 163:451–464

    Google Scholar 

  • Jia YJ, Kakuta Y, Sugawara M (1999) Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotech Biochem 63:542–549

    Article  CAS  Google Scholar 

  • Johnson SC, Yang MP, Murthy PN (2010) Heterologous expression and functional characterization of a plant alkaline phytase in Pichia pastoris. Protein Express Purif 74:196–203

    Article  CAS  Google Scholar 

  • Jorquera M, Martinez O, Maruyama F (2008) Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes Environ 23:182–191

    Article  PubMed  Google Scholar 

  • Jousset A, Bonkowski M (2010) The model predator Acanthamoeba castellanii induces the production of 2, 4, DAPG by the biocontrol strain Pseudomonas fluorescens Q2-87. Soil Biol Biochem 42:1647–1649

    Article  CAS  Google Scholar 

  • Jousset A, Rochat L, Scheu S et al (2010) Predator-prey chemical warfare determines the expression of biocontrol genes by rhizosphere-associated Pseudomonas fluorescens. Appl Environ Microbiol 76:5263–5268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kara A, Ebina S, Kondo A et al (1985) A new type of phytase from pollen of Typha latifolia L. Agric Biol Chem 49:3539–3544

    Article  Google Scholar 

  • Kerovuo J, Lauraeus M, Nurminen P et al (1998) Isolation, characterization, molecular gene cloning and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerovuo J, Rouvinen J, Hatzack F (2000) Analysis of myoinositol hexakisphosphate hydrolysis by Bacillus phytase, indication of a novel reaction mechanism. Biochem J 352:623–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS et al (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  • Kim Y-O, Lee J-K, Kim H-K et al (1998a) Cloning of thermostable phytase gene (phy) from Bacillus sp. DS11 and it’s over expression in Escherichia coli. FEMS Microbiol Lett 162:185–191

    Article  CAS  PubMed  Google Scholar 

  • Kim YO, Kim HK, Bae KS et al (1998b) Purification and properties of thermostable phytase from Bacillus sp. DS11. Enzym Microbiol Technol 22:2–7

    Article  CAS  Google Scholar 

  • Kim H-W, Kim Y-O, Lee J-H et al (2003) Isolation and characterization of a phytase with improved properties from Citrobacter braakii. Biotechnol Lett 25:1231–1234

    Article  CAS  PubMed  Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konietzny U, Greiner R (2002) Molecular and catalytic properties of phytase degrading enzymes (phytases). Int J Food Sci Technol 37:791–812

    Article  CAS  Google Scholar 

  • Konietzny U, Greiner R (2004) Bacterial phytase: potential application, in vivo function and regulation of its synthesis. Braz J Microbiol 35:12–18

    Article  Google Scholar 

  • Krome K, Rosenberg K, Dickler C (2010) Soil bacteria and protozoa affect root branching via effects on the auxin and cytokinin balance in plants. Plant Soil 328:191–201

    Article  CAS  Google Scholar 

  • Lan GQ, Abdullah N, Jalaludin S et al (2002) Culture conditions influencing phytase production of Mitsuokella jalaludinii, a new bacterial species from the rumen of cattle. J Appl Microbiol 93:668–674

    Article  CAS  PubMed  Google Scholar 

  • Levrat P (1989) Actiond’ Acanthamoeba castellarni (Protozoa: Amoebida) sur la production de siderophores par la bacterie Pseudomonas putida. C R Acad Sci Sér 3 Sci Vie 308:161–164

    Google Scholar 

  • Li M, Osaki M, Madhusudana Rao I et al (1997) Secretion of phytase from the roots of several plant species under phosphorus-deficient conditions. Plant Soil 195:161–169

    Article  Google Scholar 

  • Li XG, Porres JM, Mullaney EJ et al (2007a) Phytase: source, structure and application. In: Industrial enzymes. Springer, Dordrecht, pp 505–529

    Chapter  Google Scholar 

  • Li X, Wu Z, Li W et al (2007b) Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Appl Microbiol Biotechnol 74:1120–1125

    Article  CAS  PubMed  Google Scholar 

  • Li G, Yang S, Li M et al (2009) Functional analysis of an Aspergillus ficuum phytase gene in Saccharomyces cerevisiae and its root-specific, secretory expression in transgenic soybean plants. Biotechnol Lett 31:1297–1303

    Article  CAS  PubMed  Google Scholar 

  • Li R, Zhao J, Sun C et al (2010) Biochemical properties, molecular characterizations, functions, and application perspectives of phytases. Front Agric China 4:195–209

    Article  CAS  Google Scholar 

  • Lilly VG (1965) The chemical environment for growth. 1. In: Ainsworth GC, Sussman AS (eds) The fungi, media, macro and micronutrients, vol 1. Academic, New York, pp 465–478

    Google Scholar 

  • Lott JN, Ockenden I, Raboy V et al (2000) Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Sci Res 10(1):11–33

    Article  CAS  Google Scholar 

  • Luria SE (1960) The bacterial protoplasm: composition and organization. Bacteria 1:1–34

    CAS  Google Scholar 

  • Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marlida Y, Delfita R, Adnadi P et al (2010) Isolation, characterization and production of phytase from endophytic fungus its application for feed. Pak J Nutr 9:471–474

    Article  CAS  Google Scholar 

  • Mazzola M, De Bruijn I, Cohen MF et al (2009) Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Appl Environ Microbiol 75:6804–6811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellano HM, Munnecke DE, Endo RM (1970) Relationship of seedling age to development of Pythium ultimum on roots of Antirrhinum majus. Phytopathology 60:935–942

    Article  Google Scholar 

  • Menezes-Blackburn D, Jorquera MA, Greiner R et al (2013) Phytases and phytase-labile organic phosphorus in manures and soils. Crit Rev Environ Sci Technol 43:916–954

    Article  CAS  Google Scholar 

  • Minami R, Uchiyama K, Murakami T (1998) Properties, sequence and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem 123:1112–1118

    Article  CAS  PubMed  Google Scholar 

  • Minggang L, Mitsuru O, Idupulapati MR, Tadano T (1997) Secretion of phytase from the roots of several plant species under phosphorus-deficient conditions. Plant Soil 195:161–169

    Article  Google Scholar 

  • Mittal V, Singh O, Nayyar H et al (2008) Stimulatory effect of phosphate solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv.GPF2). Soil Biol Biochem 40:718–727

    Article  CAS  Google Scholar 

  • Morgan PW, Drew MC (1997) Ethylene and plant response to stress. Physiol Plant 100:620–630

    Article  CAS  Google Scholar 

  • Mukhametzyanova AD, Akhmetova AI, Sharipova MR (2012) Microorganisms as phytase producers. Microbiology 81:267–275

    Article  CAS  Google Scholar 

  • Mullaney EJ, Ullah AHJ (2003) Phytases: attributes, catalytic mechanisms and applications. Biochem Biophys Res Commun 312:179–184

    Article  CAS  PubMed  Google Scholar 

  • Mullaney EJ, Daly CB, Ullah AH (2000) Advances in phytase research. Adv Appl Microbiol 47:157–199

    Article  CAS  PubMed  Google Scholar 

  • Müller MS, Scheu S, Jousset A (2013) Protozoa drive the dynamics of culturable biocontrol bacterial communities. PLoS One 8:e66200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nielsen TH, Sorensen D, Tobiasen C et al (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page FC (1988) A new key to freshwater and soil Gymnamoebae: with instructions for culture. Freshwater Biological Association, Ambleside

    Google Scholar 

  • Pandey A, Szakacs G, Soccol CR et al (2001) Production, purification and properties of microbial phytases. Bioresour Technol 77:203–214

    Article  CAS  PubMed  Google Scholar 

  • Pasamontes L, Haiker M, Wyss M (1997) Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol 63:1696–1700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel KJ, Singha AK, Nareshkumarb G (2010) Organic-acid-producing, phytate-mineralizing rhizobacteria and their effect on growth of pigeon pea (Cajanus cajan). Appl Soil Ecol 44:252–261

    Article  Google Scholar 

  • Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Can J Microbiol 47:368–372

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Powar VK, Jagannathan V (1982) Purification and properties of phytate-specific phosphatase from Bacillus subtilis. J Bacteriol 151:1102–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quan C-S, Tian W-J, Fan S-D et al (2004) Purification and properties of a low-molecular weight phytase from Cladosporium sp. FP-1. J Biosci Bioeng 97:260–266

    Article  CAS  PubMed  Google Scholar 

  • Quiquampoix H, Burns RG (2007) Interactions between proteins and soil mineral surfaces: environmental and health consequences. Elements 3:401–406

    Article  CAS  Google Scholar 

  • Raboy V, Dickinson DB (1987) The timing and rate of phytic acid accumulation in developing soybean seeds. Plant Physiol 85:841–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahdari P, Hosseini SM, Tavakoli S (2012) The studying effect of drought stress on germination, proline, sugar, lipid, protein and chlorophyll content in purslane (Portulaca oleracea L.) leaves. J Med Plant Res 6:1539–1547

    CAS  Google Scholar 

  • Ramaekers L, Remans R, Rao IM (2010) Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crop Res 117:169–176

    Article  Google Scholar 

  • Reddy MS, Kumar S, Babita K (2002) Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresour Technol 84:187–189

    Article  CAS  PubMed  Google Scholar 

  • Reddy CS, Kim SC, Kaul T (2017) Genetically modified phytase crops role in sustainable plant and animal nutrition and ecological development: a review. 3 Biotech 7:195

    Article  PubMed Central  PubMed  Google Scholar 

  • Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson A, Hadobas P, Hayes J (2000) Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.). roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ 23:397–405

    Article  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001a) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001b) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Plant Soil 229:47–56

    Article  CAS  Google Scholar 

  • Richardson AE, Barea J-M, McNeill AM (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rossolini GM, Schippa S, Riccio ML et al (1998) Bacterial nonspecific acid phosphohydrolases: physiology, evolution and use as tools in microbial biotechnology. Cell Mol Life Sci 54:833–850

    Article  CAS  PubMed  Google Scholar 

  • Sajidan A, Farouk A, Greiner R (2004) Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol 65:110–118

    Article  CAS  PubMed  Google Scholar 

  • Sarapatka B (2002) Phosphatase activity of Eutric cambisols (Uppland, Sweden) in relation to soil properties and farming systems. Acta Agric Bohem 33:18–24

    Google Scholar 

  • Sayre RM (1973) Theratromyxa weberi, an amoeba predatory on plant-parasitic nematodes. J Nematol 5:258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer M, Schauermann J (1990) The soil fauna of beech forests: comparison between a mull and a modern soil. Pedobiologia 34:299–314

    Google Scholar 

  • Scholz RW, Hellums DT, Roy AA (2015) Global sustainable phosphorus management: a transdisciplinary venture. Curr Sci 108:3–12

    Google Scholar 

  • Schröter D, Wolters V, De Ruiter PC (2003) C and N mineralisation in the decomposer food webs of a European forest transect. Oikos 102:294–308

    Article  Google Scholar 

  • Scott JJ (1991) Alkaline phytase activity in nonionic detergent extracts of legume seeds. Plant Physiol 95:1298–1301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Selvakumar G, Reetha S, Thamizhiniyan P (2012) Response of biofertilizers on growth, yield attributes and associated protein profiling changes of blackgram (Vigna mungo L. Hepper). WASJ 16:1368–1374

    Google Scholar 

  • Sgherri C, Stevanovic B, Navari-Izzo F (2000) Role of phenolic acids during dehydration and rehydration of Ramonda serbica. Physiol Plant 122:478–485

    Article  CAS  Google Scholar 

  • Sharma A, Rawat US, Yadav BK (2012) Influence of phosphorus levels and phosphorus solubilizing fungi on yield and nutrient uptake by wheat under sub-humid region of Rajasthan, India. ISRN Agron 15:2012

    Google Scholar 

  • Sherr BF, Sherr EB, Fallon RD (1987) Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol 53:958–965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu M (1992) Purification and characterization of a phytase from Bacillus subtilis (natto) N-77. Biosci Biotechnol Biochem 56:1266–1269

    Article  CAS  Google Scholar 

  • Sieburth JM, Davis PG (1982) The role of heterotrophic nanoplankton in the grazing and nurturing of planktonic bacteria in the Sargasso and Caribbean Seas. Ann Inst Oceanogr 58(S):285–296

    Google Scholar 

  • Singh B, Satyanarayana T (2010) Plant growth promotion by an extracellular HAP-phytase of a thermophilic mold Sporotrichum thermophile. Appl Biochem Biotechnol 160:1267–1276

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Satyanarayana T (2015) Fungal phytases: characteristics and amelioration of nutritional quality and growth of non-ruminants. J Anim Physiol Anim Nutr 99:646–660

    Article  CAS  Google Scholar 

  • Singh B, Kunze G, Satyanarayana T (2011) Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol Mol Biol Rev 6:69–87

    CAS  Google Scholar 

  • Tamimi SM, Timko MP (2003) Effects of ethylene and inhibitors of ethylene synthesis and action on nodulation in common bean (Phaseolus vulgaris L.). Plant Soil 257:125–131

    Article  CAS  Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M (2005) Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 138:2337–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarafdar JC (1995) Dual inoculation with Aspergillus fumigatus and Glomus mosseae enhances biomass production and nutrient uptake in wheat (Triticum aestivum L.) supplied with organic phosphorus as Na-Phytate. Plant Soil 173:97–102

    Article  CAS  Google Scholar 

  • Tarafdar JC, Yadav RS, Meena SC (2001) Comparative efficiency of acid phosphatase originated from plant and fungal sources. J Plant Nutr Soil Sci 164:279–282

    Article  CAS  Google Scholar 

  • Tittabutr P, Piromyou P, Longtonglang A (2013) Alleviation of the effect of environmental stresses using co-inoculation of mungbean by Bradyrhizobium and Rhizobacteria containing stress-induced ACC deaminase enzyme. Soil Sci Plant Nutr 59:559–557

    Article  CAS  Google Scholar 

  • Tran HT, Hurley BA, Plaxton WC (2010) Feeding hungry plants: the role of purple acid phosphatases in phosphate nutrition. Plant Sci 179:14–27

    Article  CAS  Google Scholar 

  • Turk M, Sandberg AS, Carlsson N et al (2000) Inositol hexaphosphate hydrolysis by baker’s yeast. Capacity, kinetics and degradation products. J Agric Food Chem 48:100–104

    Article  CAS  PubMed  Google Scholar 

  • Turner BL, Papházy MJ, Haygarth PM et al (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond B Biol Sci 357:449–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tye AJ, Siu FKY, Leung TYC et al (2002) Molecular cloning and the bio-chemical characterization of two novel phytases from Bacillus subtilis 168 and Bacillus licheniformis. Appl Microbiol Biotechnol 59:190–197

    Article  CAS  PubMed  Google Scholar 

  • Unno Y, Okubo K, Wasaki J et al (2005) Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ Microbiol 7:396–404

    Article  PubMed  Google Scholar 

  • Vats P, Banerjee UC (2004) Production studies and catalytic properties of phytases (myo-inositol hexakisphosphate phosphohydrolases): an overview. Enzym Microb Technol 35:3–14

    Article  CAS  Google Scholar 

  • Vats P, Bhattacharyya MS, Banerjee UC (2005) Use of phytases (myo-inositolhexakis phosphate phosphohydrolases) for combating environmental pollution: a biological approach. Crit Rev Environ Sci Technol 35:469–486

    Article  CAS  Google Scholar 

  • Wallenstein MD, Burns RG (2011) Ecology of extracellular enzyme activities and organic matter degradation in soil: a complex community-driven process. In: Dick RP (ed) Methods of soil enzymology. Soil Sci Soc Am, Madison, pp 35–55

    Google Scholar 

  • Wallenstein MD, McMahon SK, Schimel JP (2009) Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils. Glob Chang Biol 15:1631–1639

    Article  Google Scholar 

  • Weidner S, Latz E, Agaras B (2017) Protozoa stimulate the plant beneficial activity of rhizospheric pseudomonads. Plant Soil 410:509–515

    Article  CAS  Google Scholar 

  • Wyss M, Brugger R, Kronenberger A et al (1999) Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol 65:367–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao C, Chi R, Li X et al (2011) Biosolubilization of rock phosphate by three stress-tolerant fungal strains. Appl Biochem Biotechnol 165:719–727

    Article  CAS  PubMed  Google Scholar 

  • Xuguang N, Lichao S, Yinong X et al (2018) Drought-tolerant plant growth-promoting Rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580

    Article  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yoon SJ, Choi YJ, Min HK et al (1996) Isolation and identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzym Microb Technol 18:449–454

    Article  CAS  Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:98–169

    Google Scholar 

  • Zamudio M, González A, Medina JA (2001) Lactobacillus plantarum phytase activity is due to nonspecific acid phosphatase. Lett Appl Microbiol 32:181–184

    Article  CAS  PubMed  Google Scholar 

  • Zamudio M, González A, Bastarrachea F (2002) Regulation of Raoultella terrigena comb.nov. phytase expression. Can J Microbiol 48:71–81

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The corresponding author, SVP, is kindly acknowledging the Department of Biotechnology, New Delhi, for the Indo-US Foldscope Major Research Project grant (Grant No. BT/IN/Indo-US/Foldscope/39/2015).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohite, B.V. et al. (2019). New Age Agricultural Bioinputs. In: Singh, D., Gupta, V., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8391-5_14

Download citation

Publish with us

Policies and ethics