Skip to main content

Advertisement

Log in

Biotechnological production and applications of phytases

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Phytases decompose phytate, which is the primary storage form of phosphate in plants. More than 10 years ago, the first commercial phytase product became available on the market. It offered to help farmers reduce phosphorus excretion of monogastric animals by replacing inorganic phosphates by microbial phytase in the animal diet. Phytase application can reduce phosphorus excretion by up to 50%, a feat that would contribute significantly toward environmental protection. Furthermore, phytase supplementation leads to improved availability of minerals and trace elements. In addition to its major application in animal nutrition, phytase is also used for processing of human food. Research in this field focuses on better mineral absorption and technical improvement of food processing. All commercial phytase preparations contain microbial enzymes produced by fermentation. A wide variety of phytases were discovered and characterized in the last 10 years. Initial steps to produce phytase in transgenic plants were also undertaken. A crucial role for its commercial success relates to the formulation of the enzyme solution delivered from fermentation. For liquid enzyme products, a long shelf life is achieved by the addition of stabilizing agents. More comfortable for many customers is the use of dry enzyme preparations. Different formulation technologies are used to produce enzyme powders that retain enzyme activity, are stable in application, resistant against high temperatures, dust-free, and easy to handle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Effect of analyzed phytase activity on animal performance feeding phosphorus deficient diets.

References

  • Adeola O (1999) Effect of supplemental phytase on trace mineral availability for swine. In: Coelho MB, Kornegay ET (eds) Phytase in animal nutrition and waste management, 2nd rev. edn. BASF, Mexico, pp 465–480

    Google Scholar 

  • Bach, Vilsboll, Sommer, Novozymes (2003) Method for improving particle compositions. US 2004/0130968

  • Barendse, van Doesum, Gouwens DSM et al (1993) Stabilized aqueous liquid formulations of phytase. WO 93/16175 A1

  • Barendse, Harz, Gist-Brocades (1996) Salt-stabilized enzyme preparations. EP 0758018 A1

  • Barendse, Meesters, Harz, Gist-Brocades (1998) Carbohydrate-based enzyme granulates. WO 98/54980

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312(5992):315–321

    Article  PubMed  CAS  Google Scholar 

  • Billington DC (1993) The inositol phosphates. Chemical synthesis and biological significance. Verlag Chemie, Weinheim

    Google Scholar 

  • Bindu S, Somashekar D, Joseph R (1998) A comparative study on permeabilization treatments for in situ determination of phytase of Rhodotorula gracilis. Lett Appl Microbiol 27:336–340

    Article  CAS  Google Scholar 

  • Bogar B, Szakacs G, Tengerdy RP, Linden JC, Pandey A (2003a) Optimization of phytase production by solid substrate fermentation. J Ind Microbiol Biotech 30:183–189

    CAS  Google Scholar 

  • Bogar B, Szakacs G, Pandey A, Abdulhameed S, Linden JC, Tengerdy RP (2003b) Production of phytase by Mucor racemosus in solid-state fermentation. Biotechnol Prog 19:312–319

    Article  PubMed  CAS  Google Scholar 

  • Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206

    Article  CAS  Google Scholar 

  • Brink EJ, Dekker PR, van Beresteijn ECH, Beynen AC (1991) Inhibitory effect of dietary soybean protein vs. casein on magnesium absorption in rats. J Nutr 121:1374–1381

    PubMed  CAS  Google Scholar 

  • Brugger, Lehmann, Wyss, Roche (1996) Phytase formulations. EP 0969089 A1

  • Caldwell RA (1992) Effect of calcium and phytic acid on the activation of trypsinogen and the stability of trypsin. J Agric Food Chem 40:43–46

    Article  CAS  Google Scholar 

  • Casey A, Walsh G (2004) Identification and characterization of a phytase of potential commercial interest. J Biotechnol 110:313–322

    Article  PubMed  CAS  Google Scholar 

  • CAST (Council for Agricultural Science and Technology) (2002) Animal diet modification to decrease the potential for nitrogen and phosphorus pollution. Issue Paper 21:1–16

    Google Scholar 

  • Chen CC, Wu PH, Huang CT, Cheng KJ (2004) A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme Microb Technol 35:315–320

    Article  CAS  Google Scholar 

  • Cho JS, Lee CW, Kang SH, Lee JC, Bok JD, Moon YS, Lee HG, Kim SC, Choi YJ (2003) Purification and characterization of a phytase from Pseudomonas syringae MOK1. Curr Microbiol 47:290–294

    Article  PubMed  CAS  Google Scholar 

  • Choi YM, Noh DO, Cho SH, Lee HK, Suh HJ, Chung SH (1999) Isolation of a phytase-producing Bacillus sp. KHU-10 and its phytase production. J Microbiol Biotechnol 9:223–226

    CAS  Google Scholar 

  • Cosgrove DJ (1966) The chemistry and biochemistry of inositol polyphosphates. Rev Pure Appl Chem 16:209–215

    CAS  Google Scholar 

  • Dasgupta S, Dasgupta D, Sen M, Biswas S, Biswas BB (1996) Interaction of myoinositol trisphosphate–phytase complex with the receptor for intercellular Ca2+ mobilization in plants. Biochem 35(15):4994–5001

    Article  CAS  Google Scholar 

  • De Angelis M, Gallo G, Corbo MR, McSweeney PLH, Faccia M, Giovine M, Gobbetti M (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87:259–270

    Article  PubMed  CAS  Google Scholar 

  • De Lima R, Bordin, Novozyme et al (1997) Enzyme-containing granules and process for the production thereof. WO 97/39116

  • Denbow DM, Grabau EA, Lacy GH, Kornegay ET, Russell DR, Umbeck PF (1998) Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poultry Sci 77:878–881

    CAS  Google Scholar 

  • Deshpande SS, Cheryan M (1984) Effects of phytic acid, divalent cations, and their interactions on alpha-amylase activity. J Food Sci 49:516–519

    CAS  Google Scholar 

  • Dvorakova J, Kopecky J, Havlicek V, Kren V (2000) Formation of myo-inositol phosphates by Aspergillus niger 3-phytase. Folia Microbiol 45(2):128–132

    Article  CAS  Google Scholar 

  • Eeckhout W, De Paepe M (1994) Total phosphorus, phytate phosphorus and phytase activity in plant feedstuffs. Anim Feed Sci Technol 47:19–29

    Article  CAS  Google Scholar 

  • European Union (2004a) Official Journal of the European Union C 50/52, published 25/02/2004

  • European Union (2004b) Official Journal of the European Union C 50/95, published 25/02/2004

  • European Union (2004c) Official Journal of the European Union C 50/112, published 25/02/2004

  • European Union (2004d) Official Journal of the European Union L 270/12, published 18/08/2004

  • Farrell DJ, Martin EA, Du Preez JJ, Bongarts M, Betts M, Sudaman A, Thomson E (1993) The beneficial effects of a microbial phytase in diets of broiler chickens and ducklings. J Anim Physiol Anim Nutr 69:278–283

    CAS  Google Scholar 

  • Furrer OJ, Stauffer W (1987) P-Verlagerung im Boden und Auswaschung. In: FAC Oktobertagung 1987: Phosphat in Landwirtschaft und Umwelt, Eidgenössische Forschungsanstalt für Agrikulturchemie und Umwelthygiene. FAC, Liebefeld-Bern, pp 83–90

    Google Scholar 

  • Ghani, Genencor (2000) Protein-containing granules and granule formulations. WO 01/29170

  • Gibson D (1987) Production of extracellular phytase from Aspergillus ficuum on starch media. Biotechnol Lett 9:305–310

    Article  CAS  Google Scholar 

  • Golovan S, Wang G, Zhang J, Forsberg CW (2000) Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can J Microbiol 46:59–71

    Article  PubMed  CAS  Google Scholar 

  • Golovan SP, Hayes MA, Phillips JP, Forsberg CW (2001a) Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nat Biotechnol 19:429–433

    Article  PubMed  CAS  Google Scholar 

  • Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney D, Plante C, Pollard J, Fan MZ, Hayes MA, Laursen J, Hjorth JP, Hacker RR, Phillips JP, Forsberg CW (2001b) Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19:741–745

    Article  PubMed  CAS  Google Scholar 

  • Greiner R, Konietzny U, Jany KD (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303:107–113

    Article  PubMed  CAS  Google Scholar 

  • Gutknecht K (1997) Green genes: alfalfa biofarming is about to take root. Wisc Agrict, Mid-March:8–10

  • Hamada JS (1996) Isolation and identification of the multiple forms of soybean phytases. J Am Oil Chem Soc 73:1143–1151

    CAS  Google Scholar 

  • Han Y, Lei XG (1999) Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch Biochem Biophys 364:83–90

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Wilson DB, Lei XG (1999) Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Appl Environ Microbiol 65:1915–1918

    PubMed  CAS  Google Scholar 

  • Hara A, Ebina S, Kondo A, Funagua T (1985) A new type of phytase from Typha latifolia L. Agric Biol Chem 49:3539–3544

    CAS  Google Scholar 

  • Harland BF, Oberleas D (1999) Phytic acid complex in feed ingredients. In: Coelho MB, Kornegay ET (eds) Phytase in animal nutrition and waste management, 2nd rev edn. BASF, Mexico, pp 69–76

    Google Scholar 

  • Haros M, Rosell CM, Benedito C (2001) Use of fungal phytase to improve breadmaking performance of whole wheat bread. J Agric Food Chem 49(11):5450–5454

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Toma Y, Igaue I (1989) Purification and characterization of acid phosphatases with or without phytase activity from rice bran. Agric Biol Chem 53:1475–1483

    CAS  Google Scholar 

  • Hong K, Ma Y, Li M (2001) Solid-state fermentation of phytase from cassava dregs. Appl Biochem Biotechnol 91–93:777–785

    Article  Google Scholar 

  • Hong C, Cheng K, Tseng T, Wang C, Liu L, Yu S, Hong CY, Cheng KJ, Tseng TH, Wang CS, Liu LF, Yu SM (2004) Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Res 13:29–39

    Article  PubMed  CAS  Google Scholar 

  • Howson SJ, Davis RP (1983) Production of phytate hydrolyzing enzymes by some fungi. Enzyme Microb Technol 5:377–389

    Article  CAS  Google Scholar 

  • Huebel F, Beck E (1996) Maize root phytase. Purification, characterization, and localization of enzyme activity and its putative substrate. Plant Physiol 112:1429–1436

    PubMed  CAS  Google Scholar 

  • Hurrell RF, Reddy MB, Juillerat MA, Cook JD (2003) Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am J Clin Nutr 77(5):1213–1219

    PubMed  CAS  Google Scholar 

  • Hwang WZ (1999) Screening of phytase-producing bacterial strains from soil and characterization of their phytase enzymes. Guoli Zhongxing Daxue Nonglin Xuebao 48:15–25

    CAS  Google Scholar 

  • Jacobsen, Jensen, Novo Nordisk (1992) Use of an enzyme containing granulate and method for production of a pelletized fodder. WO 92/12645

  • Jongbloed AW, de Jonge L, Kemme PA, Mroz Z, Kies AK (1997) Phytates, phytase, phosphorus, protein and performance in pigs. Proc. 6th Forum on Anim. Nutr., BASF, Ludwigshafen, Germany, pp 92–106

    Google Scholar 

  • Jongbloed AW, Kemme PA, Mroz Z (1999) Effect of microbial phytase on apparent ileal digestibilities of nitrogen and amino acids in pig diets. In: Coelho MB, Kornegay ET (eds) Phytase in animal nutrition and waste management, 2nd rev edn. BASF, Mexico, pp 507–514

    Google Scholar 

  • Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085

    PubMed  CAS  Google Scholar 

  • Kerovuo J, Rouvinen J, Hatzack F (2000) Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase: indication of a novel reaction mechanism. Biochem J 352:623–628

    Article  PubMed  CAS  Google Scholar 

  • Kim YO, Kim HK, Bae KS, Yu JH, Oh TK (1998a) Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme Microb Technol 22:2–7

    Article  CAS  Google Scholar 

  • Kim DS, Godber JS, Kim HR (1999a) Culture conditions for a new phytase-producing fungus. Biotechnol Lett 21:1077–1081

    Article  CAS  Google Scholar 

  • Kim YO, Lee JK, Oh BC, Oh TK (1999b) High-level expression of a recombinant thermostable phytase in Bacillus subtilis. Biosci Biotechnol Biochem 63:2205–2207

    Article  CAS  Google Scholar 

  • Kim HW, Kim YO, Lee JH, Kim KK, Kim YJ (2003) Isolation and characterization of a phytase with improved properties from Citrobacter braakii. Biotechnol Lett 25:1231–1234

    Article  PubMed  CAS  Google Scholar 

  • Klein Holkenborg ABM, van der Lee AG, de Bot PHM, Hemke G, Kies AK (2003) Effect of different phytase sources on ileal phosphorus digestibility in layers. Proc 14th Eur Symp Poult Nutr, Lillehammer, Norway, pp 40–41

    Google Scholar 

  • Konietzny U, Greiner R (2002) Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int J Food Sci Technol 37:91–812

    Google Scholar 

  • Kornegay ET (1999) Effectiveness of Natuphos™ phytase in improving the bioavalabilities of phosphorus and other nutrients in corn–soybean meal diets for young pigs. In: Coelho MB, Kornegay ET (eds) Phytase in animal nutrition and waste management, 2nd rev edn. BASF, Mexico, pp 249–258

    Google Scholar 

  • Krishna C, Nokes SE (2001) Predicting vegetative inoculum performance to maximize phytase production in solid-state fermentation using response surface methodology. J Ind Microbiol Biotech 26:161–170

    Article  CAS  Google Scholar 

  • Krystofova S, Varecka L, Vollek V, Grimova J, Betina V (1994) Growth and conidiation of Trichoderma viride are affected by non-steroidal antiinflammatory agents. Folia Microbiol (Prague) 39(1):44–48

    CAS  Google Scholar 

  • Lambrechts C, Boze H, Segueilha L, Moulin G, Galzy P (1993) Influence of culture conditions on the biosynthesis of Schwanniomyces castelli phytase. Biotechnol Lett 15:399–404

    Article  CAS  Google Scholar 

  • Lan GQ, Abdullah N, Jalaludin S, Ho YW (2002) Optimization of carbon and nitrogen sources for phytase production by Mitsuokella jalaludinii, a new rumen bacterial species. Lett Appl Microbiol 35:157–161

    Article  PubMed  CAS  Google Scholar 

  • Lehmann M, Pasamontes L, Lassen SF, Wyss M (2000) The consensus concept for thermostability engineering of proteins. Biochim Biophys Acta 1543:408–415

    PubMed  CAS  Google Scholar 

  • Lei XG, Stahl C (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl Microbiol Biotechnol 57:474–481

    Article  PubMed  CAS  Google Scholar 

  • Li J, Hegeman CE, Hanlon RW, Lacy GH, Denbow DM, Grabau EA (1997) Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol 114:1103–1111

    Article  PubMed  CAS  Google Scholar 

  • Mandviwala TN, Khire JM (2000) Production of high activity thermostable phytase from thermotolerant Aspergillus niger in solid state fermentation. J Ind Microbiol Biotechnol 24:237–243

    Article  CAS  Google Scholar 

  • Martin EA, Farrell DJ (1994) The effect of microbial phytase in rice bran based diets fed to grower finisher diets. Proc Aust Poult Sci Symp 6:88–91

    Google Scholar 

  • Martin JA, Murphy RA, Power RFG (2003) Cloning and expression of fungal phytases in genetically modified strains of Aspergillus awamori. J Ind Microbiol Biotech 30:568–576

    Article  CAS  Google Scholar 

  • Maugenest S, Martinez I, Godin B, Perez P, Lescure AM (1999) Structure of two maize phytase genes and their spatio-temporal expression during seedling development. Plant Mol Biol 39:503–514

    Article  PubMed  CAS  Google Scholar 

  • Mayer AF, Hellmuth K, Schlieker H, Lopez-Ulibarri R, Oertel S, Dahlems U, Strasser AWM, van Loon APGM (1999) An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol Bioeng 63:373–381

    Article  PubMed  CAS  Google Scholar 

  • McCollum EV, Hart EB (1908) On the occurrence of a phytin-splitting enzyme in animal tissue. J Biol Chem 4:497–500

    Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415(1):47–81

    Google Scholar 

  • Miksch G, Kleist S, Friehs K, Flaschel E (2002) Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors. Appl Microbiol Biotechnol 59:685–694

    Article  PubMed  CAS  Google Scholar 

  • Misset O (2003) Phytase. Food Sci Technol 122:687–706

    CAS  Google Scholar 

  • Mohanna C, Nys Y (1999) Changes in zinc and manganese availability in broiler chicks induced by vegetal and microbial phytases. Anim Feed Sci Technol 77:241–253

    Article  CAS  Google Scholar 

  • Mullaney EJ, Daly CB, Ullah AHJ (2000) Advances in phytase research. Adv Appl Microbiol 47:157–199

    PubMed  CAS  Google Scholar 

  • Mullaney EJ, Daly CB, Kim T, Porres JM, Lei XG, Sethumadhavan K, Ullah AHJ (2002) Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0. Biochem Biophys Res Commun 297:1016–1020

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y, Funahashi S (1962) Phytase (myo-inositol hexaphosphate phosphohydrolase) from wheat bran. Agric Biol Chem 26:794–803

    CAS  Google Scholar 

  • Nakamura Y, Fukuhara H, Sano K (2000) Secreted phytase activities of yeasts. Biosci Biotechnol Biochem 64:841–844

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Joh T, Tokumoto E, Hayakawa T (1999) Purification and characterization of phytase from bran of Triticum aestivum L. Cv. Nourin #61. Food Sci Technol Res 5:18–23

    CAS  Google Scholar 

  • Nout MJR, Rambouts FM (1990) Recent developments in tempe research. A review. J Appl Bacteriol 69:609–633

    Google Scholar 

  • Oh BC, Choi WC, Park S, Kim YO, Oh TK (2004) Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl Microbiol Biotechnol 63:362–372

    Article  PubMed  CAS  Google Scholar 

  • Paditz K, Kluth H, Rodehutscord M (2004) Relationship between graded doses of three microbial phytases and digestible phosphorus in pigs. Anim Sci 78:429–438

    CAS  Google Scholar 

  • Pallauf J, Hoehler D, Rimbach G (1992) Effect of microbial phytase supplementation to a maize–soya diet on the apparent absorption of Mg, Fe, Cu, Mn and Zn and parameters of Zn status in piglets. J Anim Physiol Anim Nutr 68:1–9

    Article  CAS  Google Scholar 

  • Park SC, Oh BC, Rhee MH, Jeong KS, Lee KW, Song JC, Oh TK (2003) The enzyme activity of a novel phytase from Bacillus amyloliquefaciens DS11 and its potential use as a feed pellet. J Gen Appl Microbiol 49:129–133

    Article  PubMed  CAS  Google Scholar 

  • Pasamontes L, Haiker M, Wyss M, Tessier M, Van Loon APGM (1997) Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol 63:1696–1700

    PubMed  CAS  Google Scholar 

  • Pen J, Verwoerd TC, van Paridon PA, Beudeker RF, van den Elzen PJM, Geerse K, van der Klis JD, Versteegh HAJ, van Ooyen AJJ, Joekema A (1993) Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio/Technology 11:811–814

    Article  CAS  Google Scholar 

  • Phillippy BQ, Mullaney EJ (1997) Expression of an Aspergillus niger Phytase (phyA) in Escherichia coli. J Agric Food Chem 45:3337–3342

    Article  CAS  Google Scholar 

  • Pointillart A (1988) Phytate phosphorus utilisation in growing pigs. In: Buraczewska L, Buraczewska S, Zebrowska T (eds) Digestive physiology in the pig. Proc. 4th International Seminar. Polish Academy of Science, Jablonna, Poland, pp 192–196

    Google Scholar 

  • Ponstein AS, Bade JB, Verwoerd TC, Molendijk L, Storms J, Beudeker RF, Pen J (2002) Stable expression of Phytase (phyA) in canola (Brassica napus) seeds: towards a commercial product. Mol Breed 10:31–44

    Article  CAS  Google Scholar 

  • Powar VK, Jagannathan V (1982) Purification of phytase-specific phosphatase from Bacillus subtilis. J Bacteriol 151:1102–1108

    PubMed  CAS  Google Scholar 

  • Quan CS, Tian WJ, Fan SD, Kikuchi YI (2004) Purification and properties of a low-molecular-weight phytase from Cladosporium sp. FP-1. J Biosci Bioeng 97:260–266

    PubMed  CAS  Google Scholar 

  • Rapoport S, Leva E, Guest GM (1941) Phytase in plasma and erythrocytes of vertebrates. J Biol Chem 139:621–632

    CAS  Google Scholar 

  • Ravindran V, Bryden WL, Kornegay ET (1995) Phytates: occurrence, bioavailability and implications in poultry nutrition. Poult Avian Biol Rev 6:125–143

    Google Scholar 

  • Ravindran V, Cabahug S, Bryden WL, Selle PH (1999) The influence of microbial phytase on the bioavailability of protein and energy in broiler chickens. In: Coelho MB, Kornegay ET (eds) Phytase in animal nutrition and waste management, 2nd rev edn. BASF, Mexico, pp 573–584

    Google Scholar 

  • Rehms H, Barz W (1995) Degradation of stachyose, raffinose, melibiose and sucrose by different tempe-producing Rhizopus fungi. Appl Microbiol Biotechnol 44(1–2):47–52

    PubMed  CAS  Google Scholar 

  • Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516

    Article  PubMed  CAS  Google Scholar 

  • Rodehutscord M (2001) Current phosphorus evaluation systems for livestock in Germany. Lohmann-Inf 25:1–8

    Google Scholar 

  • Rodriguez E, Han Y, Lei XG (1999) Cloning, sequencing, and expression of an Escherichia coli acid phosphatase/phytase gene (appA2) isolated from pig colon. Biochem Biophys Res Commun 257:117–123

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez E, Mullaney EJ, Lei XG (2000a) Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme. Biochem Biophys Res Commun 268:373–378

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez E, Wood Z, Karplus A, Lei XG (2000b) Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch Biochem Biophys 382:105–112

    Article  PubMed  CAS  Google Scholar 

  • Rutherfurd SM, Edwards AC, Selle PH (1997) Effect of phytase on lysine-rice pollard complexes. In: Cranwell PD (ed) Manipulating pig production VI. Australasian Pig Science Association, Canberra, pp 248

    Google Scholar 

  • Sabu A, Sarita S, Pandey A, Bogar B, Szakacs G, Soccol CR (2002) Solid-state fermentation for production of phytase by Rhizopus oligosporus. Appl Biochem Biotechnol 102–103:251–260

    Article  Google Scholar 

  • Sajidan A, Farouk A, Greiner R, Jungblut P, Mueller EC, Borriss R (2004) Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol 65:110–118

    Article  PubMed  CAS  Google Scholar 

  • Samanta S, Dalal B, Biswas S, Biswas BB (1993) Myoinositol tris-phosphate–phytase complex as an elicitor in calcium mobilization in plants. Biochem Biophys Res Commun 191(2):427–434

    Article  PubMed  CAS  Google Scholar 

  • Sandberg AS, Brune M, Carlsson NG, Hallberg L, Skoglund E, Rossander-Hulthen L (1999) Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. Am J Clinical Nutr 70:240–246

    CAS  Google Scholar 

  • Sano K, Fukuhara H, Nakamura Y (1999) Phytase of the yeast Arxula adeninivorans. Biotechnol Lett 21:33–38

    Article  CAS  Google Scholar 

  • Schoener FJ, Hoppe PP (2002) The effects of phytase in poultry nutrition. In: McNab JM, Boorman KN (eds) Poultry feedstuffs: supply, composition and nutritive value. CAB International, Wallingford, UK, pp 363–373

    Google Scholar 

  • Sebastian S, Touchburn SP, Chavez ER (1998) Implications of phytic acid and supplemental microbial phytase in poultry nutrition: a review. World's Poult Sci J 54:27–47

    Article  Google Scholar 

  • Segueilha L, Lambrechts C, Boze H, Moulin G, Galzy P (1992) Purification and properties of the phytase from Schwanniomyces castellii. J Ferment Bioeng 74:7–11

    Article  CAS  Google Scholar 

  • Shah V, Parekh LJ (1990) Phytase from Klebsiella Sp. No. PG-2: purification and properties. Indian J Biochem Biophys 27:98–102

    PubMed  CAS  Google Scholar 

  • Shimizu M (1993) Purification and characterization of phytase and acid phosphatase produced by Aspergillus oryzae K1. Biosci Biotechnol Biochem 57:1364–1365

    Article  CAS  Google Scholar 

  • Simon O, Igbasan F (2002) In vitro properties of phytases from various microbial origins. Int J Food Sci Technol 37:813–822

    Article  CAS  Google Scholar 

  • Siren M (1986a) Stabilized pharmaceutical and biological material composition. Pat. SE 003165

  • Siren M (1986b) New myo-inositol triphosphoric acid isomer. Pat. SW 052950

  • Sreeramulu G, Srinivasa DS, Nand K, Joseph R (1996) Lactobacillus amylovorus as a phytase producer in submerged culture. Lett Appl Microbiol 23:385–388

    CAS  Google Scholar 

  • Stahl CH, Wilson DB, Lei XG (2003) Comparison of extracellular Escherichia coli AppA phytases expressed in Streptomyces lividans and Pichia pastoris. Biotechnol Lett 25:827–831

    Article  PubMed  CAS  Google Scholar 

  • Tambe SM, Kaklij GS, Kelkar SM, Parekh LJ (1994) Two distinct molecular forms of phytase from Klebsiella aerogenes: evidence for unusually small active enzyme peptide. J Ferment Bioeng 77:23–27

    Article  CAS  Google Scholar 

  • Temperton H, Dudley J, Pickering GL (1965a) Phosphorus requirements of poultry. IV. The effects on growing pullets of feeding diets containing no animal protein or supplementary phosphorus. Br Poult Sci 6:125–133

    PubMed  CAS  Google Scholar 

  • Temperton H, Dudley J, Pickering GL (1965b) Phosphorus requirements of poultry. V. The effects during the subsequent laying year of feeding growing diets containing no animal protein or supplementary phosphorus. Br Poult Sci 6:135–141

    PubMed  CAS  Google Scholar 

  • Thiel U, Weigand E (1992) Influence of dietary zinc and microbial phytase supplementation on Zn retention and zinc excretion in broiler chicks. Proc. XIX World's Poultry Congress, Vol 3. WPSA, Amsterdam, pp 460

    Google Scholar 

  • Tye AJ, Siu FKY, Leung TYC, Lim BL (2002) Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Appl Microbiol Biotechnol 59:190–197

    Article  PubMed  CAS  Google Scholar 

  • Ullah AHJ, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T, Austin-Phillips S (1999) Characterization of recombinant fungal phytase (phyA) expressed in tobacco leaves. Biochem Biophys Res Commun 264:201–206

    Article  PubMed  CAS  Google Scholar 

  • Ullah AHJ, Sethumadhavan K, Lei XG, Mullaney EJ (2000) Biochemical characterization of cloned Aspergillus fumigatus phytase (phyA). Biochem Biophys Res Commun 275:279–285

    Article  PubMed  CAS  Google Scholar 

  • Ullah AHJ, Sethumadhavan K, Mullaney EJ, Zieglhoffer T, Austin-Phillips S (2002) Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochem Biophy Res Commun 290:1343–1348

    Article  CAS  Google Scholar 

  • Van der Klis JD, Versteegh HAJ (1991) Ileal absorption of phosphorus in lightweight laying hens using microbial phytase and various calcium contents in laying hen feed. Spelderholt Publication No. 563. Spelderholt, Beekbergen, The Netherlands

    Google Scholar 

  • van Hartingsveldt W, van Zeijl CMJ, Harteveld GM, Gouka RJ, Suykerbuyk MEG, Luiten RGM, van Paridon PA, Selten GCM, Veenstra AE, van Gorcom RFM, van den Hondel CAMJJ (1993) Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene 127:87–94

    Article  PubMed  Google Scholar 

  • Van Gorcom RFM, van Hartignsveldt W, van Paridon PA, Veenstra AE, Luiten RGM, Selten G (1990) Cloning and expression of microbial phytase. EP 0420358 B1

  • Verwoerd TC, Van Paridon PA, Van Ooyen AJJ, van Lent JWM, Hoekema A, Pen J (1995) Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol 109:1199–1205

    Article  PubMed  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2001) Phytase production by the yeast, Pichia anomala. Biotechnol Lett 23:551–554

    Article  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2002) Purification and characterization of a thermostable and acid-stable phytase from Pichia anomala. World J Microbiol Biotechnol 18:687–691

    Article  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2004) A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala. J Appl Microbiol 97:471–476

    Article  PubMed  CAS  Google Scholar 

  • Vohra P, Gray GA, Kartzer FH (1965) Phytic acid–metal complexes. Proc Soc Exp Biol Med 120:447–449

    PubMed  CAS  Google Scholar 

  • Wang Y, Yao B, Zeng H, Shi X, Cao S, Yuan T, Fan Y (2001) Purification and property of neutral phytase form Bacillus subtilis. Weishengwu Xuebao 41:198–203

    CAS  Google Scholar 

  • Wendt P, Rodehutscord M (2004) Studies on the efficiency of two phytase preparations in pekin ducks. In: Rodehutscord M (ed) Tagungsband 8. Tagung Schweine- und Geflügelernährung. Martin-Luther-Universität, Halle-Wittenberg, pp 109–111

    Google Scholar 

  • Wyss M, Brugger R, Kronenberger A, Remy R, Fimbel R, Oesterhelt G, Lehmann M, Van Loon APGM (1999) Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol 65:367–373

    PubMed  CAS  Google Scholar 

  • Xiong AS, Yao Q-HRA, Peng RH, Li M, Fan HQ, Guo MJ, Zhang SL (2004) Isolation, characterization, and molecular cloning of the cDNA encoding a novel phytase from Aspergillus niger 113 and high expression in Pichia pastoris. J Biochem Mol Biol 37:282–291

    PubMed  CAS  Google Scholar 

  • Yanke LJ, Bae HD, Selinger LB, Cheng KJ (1998) Phytase activity of anaerobic ruminal bacteria. Microbiology (Reading) 144:1565–1573

    CAS  Google Scholar 

  • Yi Z, Kornegay ET, Denbow DM (1996) Effect of microbial phytase on nitrogen and amino acid digestibility and nitrogen retention of turkey poults fed corn–soybean meal diets. Poultry Sci 75:979–990

    CAS  Google Scholar 

  • Yip W, Wang L, Cheng C, Wu W, Lung S, Lim BL (2003) The introduction of a phytase gene from Bacillus subtilis improved the growth performance of transgenic tobacco. Biochem Biophys Res Commun 310:1148–1154

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZB, Kornegay ET, Radcliffe JS, Denbow DM, Veit HP, Larsen CT (2000) Comparison of genetically engineered microbial and plant phytase for young broilers. Poultry Sci 79:709–717

    CAS  Google Scholar 

  • Zimmermann B, Lantzsch HJ, Mosenthin R, Schoener FJ, Biesalski HK, Drochner W (2002) Comparative evaluation of the efficacy of cereal and microbial phytases in growing pigs fed diets with marginal phosphorus supply. J Sci Food Agric 82:1298–1304

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oskar Zelder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haefner, S., Knietsch, A., Scholten, E. et al. Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68, 588–597 (2005). https://doi.org/10.1007/s00253-005-0005-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0005-y

Keywords

Navigation