Skip to main content

Molecular Approaches to Nutrient Uptake and Cellular Homeostasis in Plants Under Abiotic Stress

  • Chapter
  • First Online:
Plant Nutrients and Abiotic Stress Tolerance

Abstract

Plants suffer from abiotic stress due to several soil- and environment-related factors. They need water and essential plant nutrients to carry out their metabolism and survive. Plant genome regulates expression of different sets of genes to ensure availability of nutrients and water under conditions of stress and maintain their cellular homeostasis. The plasma membranes of root hair cells have several channels, which contain transporter proteins, coded by their specific genes for uptake of water and each of the essential plant nutrients. The transporter proteins involved in water uptake are known as aquaporins (AQPs). Since plants encounter several water stress conditions during its growth period, plant genome has many AQP genes to maintain cellular water homeostasis. Two sets of genes regulate uptake of primary nutrients, nitrogen, phosphorus, and potassium. A set of high-affinity transporters are involved, when their concentration in the growth medium is low, and a set of low-affinity transporters at higher concentrations. There are specific transporters for uptake of secondary and micronutrients both under low- and high-nutrient stress conditions. Plant genome responds to various types of abiotic stresses such as cold, heat, salinity, drought, and oxidative stresses and regulates suitably uptake of nutrients to maintain their cellular homeostasis. Amino acids, plant growth regulators, intermediate metabolites, and the nutrients themselves are involved in induction or repression of transporter-encoding genes as well as posttranscriptional modification of transporter proteins. Transcription factors regulate expression of nutrient stress response genes and control nutrient homeostasis in plants at molecular level. miRNAs are involved in posttranscriptional regulation of gene expression and also in nutrient stress signal transduction pathways. Some of the beneficial elements such as Na and Si play significant roles in abiotic stress tolerance of plants. Heavy metals, which are toxic and have no known function in plant metabolism, are sometimes taken up by ion transporters involved in uptake of essential nutrients from mineral-rich soils. Plants take up radioactive isotopes without any apparent damage to them. Exposure to high nuclear radiations may kill some of the plants but others survive. Abiotic stress caused by climate change has its effect on nutrient uptake by plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghany SE, Pilon M (2008) Micro-RNA mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abdel-Ghany SE, Burkhead JL, Gogolin KA, Andres-Colas N, Bodecker JR, Puig S, Peñarrubia L, Pilon M (2005) AtCCS is a functional homolog of the yeast copper chaperone Ces1/Lys7. FEBS Lett 579:2307–2312

    Article  PubMed  CAS  Google Scholar 

  • Adachi M, Hasegawa T, Fukayama H, Tokida T, Sakai H, Matsunami T, Nakamura H, Sameshima R, Okada M (2014) Soil and water warming accelerates phenology and down regulation of leaf photosynthesis of rice plants grown under free air CO2 enrichment (FACE). Plant Cell Physiol 55(2):370–380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Afzal Z, Howton TC, Sun Y, Mukhtar MS (2016) The role of aquaporins in plant stress responses. J Dev Biol 4:1–22

    Article  CAS  Google Scholar 

  • Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G (2009) Two rice phosphate transporters OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809

    Article  PubMed  CAS  Google Scholar 

  • Alexandersson E, Fraysse L, Sjovall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    Article  PubMed  CAS  Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encode stomatal movement. Nature 411:1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Andres-Colas N, Sancenon V, Rodriguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Peñarrubia L (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallo-chaperons and functions in copper detoxification of roots. Plant J 45:225–236

    Article  PubMed  CAS  Google Scholar 

  • Anthony DM, Glass D, Britto TD, Kaiser BN et al (2002) The regulation of nitrate and ammonium transporter system in plants. J Expt Bot 53(370):855–864. Inorganic Nitrogen Assimilation Special Issue

    Google Scholar 

  • Aoki M (2012) Cesium contamination in food appears to be on the wane. The Japan Times (News), September 25

    Google Scholar 

  • Arrivault S, Senger T, Kramer U (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46:861–879

    Article  PubMed  CAS  Google Scholar 

  • Assunção AGL, Herrero E, Lin YF, Huettel B, Talukdar S, Samczniak C, Immink RG, Van Eldik M, Fiers M, Schat H, Aarts MG (2010) The Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaption to zinc deficiency. Proc Natl Acad Sci U S A 107:10296–10301

    Article  PubMed  PubMed Central  Google Scholar 

  • Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 126:696–706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker DE, Senef JP (1995) In: Alloway BJ (ed) Heavy metals in soils. Blackie Academic and Professional, London, pp 179–295

    Chapter  Google Scholar 

  • Bakhshi B, Fard EM, Nikpay N, Ebrahimi ML, Bihamta MR, Mardi M, Salekdeh GH (2016) MicroRNA signatures of drought signaling in rice root. PLoS One 11(6):e0156814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bari R, Pant BD, Stitt M, Scheible W-R (2006) PHO2, MicroRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141(3):988–999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Basu P, Burgmayer SJN (2011) Pterin chemistry and its relationship to the molybdenum cofactor, Coord. Chem Rev 255(9–10):1016–1038

    CAS  Google Scholar 

  • Baumann O, Walz B, Somlyo AP (1991) Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors. Proc Natl Acad Sci U S A 88:741–744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baxter I, Mothukumar B, Park HC, Buchner P, Lahner B, Danku J, Zhao K, Lee J, Hawkesford MJ, Guerinot ML, Salt DE (2008) Variation in molybdenum content across broadly distributed population of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet 4:1–13

    Article  CAS  Google Scholar 

  • Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the role of zinc. Science 271:1081–1085

    Article  PubMed  CAS  Google Scholar 

  • Bernard DG, Cheng Y, Zhao Y, Balk J (2009) An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. Plant Physiol 151:590–602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24:225–252

    Article  CAS  Google Scholar 

  • Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta 1840:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Borkert CM, Cox FR, Tucker MR (1998) Zinc and copper toxicity in peanut, soybean, rice and corn in soil mixtures. Commun Soil Sci Plant Anal 29:2991–3005

    Article  CAS  Google Scholar 

  • Bose J, Babourina O, Rengel Z (2011) Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot 62:2251–2264

    Article  CAS  PubMed  Google Scholar 

  • Boudsocq M, Sheen J (2010) Stress signaling II: calcium sensing and signaling. Abiotic stress adaptation in plants. Springer, New Delhi, pp 75–90

    Google Scholar 

  • Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boutigny S, Sautron E, Finazzi G, Rivassau C (2014) HMA1 and PAA1 two chloroplast envelop P1B-ATPases, play distinct roles in chloroplast copper homeostasis. J Exp Bot 65:1529–1540

    Article  CAS  PubMed  Google Scholar 

  • Braam J (1992) Regulated expression of the calmodulin related TCH genes in cultured Arabidopsis cells: induction by calcium and heat shock. Proc Natl Acad Sci U S A 89:3213–3216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389

    Article  PubMed  Google Scholar 

  • Bresler E, McNeal BL, Carter DL (1982) Saline and sodic soils-principles-dynamics-modelling, Advanced series in agricultural sciences, vol 10. Springer, Berlin

    Book  Google Scholar 

  • Britto DT, Ebrahim-Abdebili, Hamam AM, Coskun D, Kronzucker HJ (2010) 42K analysis of sodium induced potassium efflux in barley: mechanism and relevance to salt tolerance. New Phytol 186:373–384

    Article  PubMed  CAS  Google Scholar 

  • Brown PH (2006) Nickel. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. CRC Press Taylor & Francis Group, Boca Raton, pp 395–410

    Chapter  Google Scholar 

  • Brownell PF, Crossland CJ (1972) The requirement of sodium as a micronutrient by species having C4dicarboxylic photosynthetic pathway. Plant Physiol 49:794–797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buchner P, Stuiver CEE, Westerman S, Wirtz M, Hell R, Hawkesford MJ, de Kok LJ (2004) Regulation of sulfate uptake and expression of sulfate transport genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfur nutrition. Plant Physiol 136:3396–3408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burandt P, Papenbrock J, Schmidt A, Bloem E, Haneklaus S, Schnug E (2001) Genotypical differences in total sulfur contents and cysteine-desulf-hydrase activities in Brassica napus L. Phyton (Horn, Austria) 41:75–86

    CAS  Google Scholar 

  • Busconi M, Bosco CD, Crosatti C, Baldi P, Marie C, Grossi M, Mastrangelo AM, Rizza F, Cattivelli L, Stanca AM (2001) The cold-regulated genes are involved in the physiological response of barley to cold environment. ICL Agric Sci 14:17–27

    Google Scholar 

  • Cailliatte R, Schikora A, Briat J-F, Marie S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential in Arabidopsis growth in low manganese conditions. Plant Cell 22:904–917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carraretto L, Formentin E, Teardo E, Checchetto V, Tomizioli M, Morosinotto T, Giacometti GM, Finazzi G, Szabó I (2013) A thylakoid located two pore K+ channel controls photosynthetic light utilization in plants. Science 342(6154):114–118

    Article  PubMed  CAS  Google Scholar 

  • Carvajal M, Cooke DT, Clarkson DT (1996) Response of wheat plants to nutrient deprivation may involve the regulation of water channel function. Planta 199:372

    Article  CAS  Google Scholar 

  • Casano LM, Gomez LD, Lascano HR, Gonzales CA, Trippi VS (1997) Inactivation and degradation of CuZn-SOD by active oxygen species in wheat chloroplasts exposed to phot-oxidative stress. Plant Cell Physiol 38:433–440

    Article  PubMed  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly diverse protein family in maize. Plant Physiol 125:1206–1215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen CZ, Ly XF, Li JY, Yi HY, Gong JM (2012) Arabidopsis NRT1;5 is another essential component in the regulation of nitrate reallocation and stress tolerance. Plant Physiol 159:1582–1590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetics perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236

    Article  PubMed  CAS  Google Scholar 

  • Clarkson DT, Carvajal M, Henzler T, Waterhouse RN, Smyth AJ, Cooke DT, Steudle E (2000) Root hydraulic conductance diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot 51:61–70

    Article  PubMed  CAS  Google Scholar 

  • Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P, Crespi M, Niebel A (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trend Plant Sci Rev 3(10):367–407

    Article  Google Scholar 

  • Cui XH, Hao FS, Chen H, Chen J, Wang XC (2008) Expression of the Vicia faba VFPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. J Plant Res 121:207–214

    Article  PubMed  CAS  Google Scholar 

  • Dai X, Wang Y, Zhang WH (2016) A rice WRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J Exp Bot 67(3):947–960

    Article  PubMed  CAS  Google Scholar 

  • Daniels MJ, Chrispeels MJ, Yeager M (1999) Projection structure of a plant vacuole membrane aquaporin by electron cryo-crystallography. J Mol Biol 294:1337–1349

    Article  PubMed  CAS  Google Scholar 

  • Devaiah BN, Nagarajan VK, Raghothama KG (2007) Phosphate homeostasis and root development in Arabidopsis are synchronized by zinc finger transcription factor ZAT6. Plant Physiol 145:147–159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Divol F, Couch D, Conejero G, Roschzttardtz H, Mari S, Curie C (2013) The Arabidopsis YELLOW STRIPE LIKE4 and 6 transporters control iron release from chloroplast. Plant Cell 25:1040–1055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diwan JJ (2007) Membrane transport, molecular biochemistry-I, Copyright 1998–2007 by Joyce J. Diwan. All rights reserved

    Google Scholar 

  • Dixon NE, Gazzola C, Blakel RL, Zerner YB (1975) Jack bean urease (EC.3.5. 1.5.3.) a metallo-enzyme, a simple biological role for nickel. J Am Chem Soc 97:4131–4133

    Article  PubMed  CAS  Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles of Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong-qing SHI, Yuan Z, Jin-hu MA, Yu-long LI, Jin XU (2013) Identification of zinc deficiency-responsive microRNA in Brassica juncea roots by small RNA sequencing. J Integr Agric 12(11):2036–2044

    Article  Google Scholar 

  • Droppa M, Masojidek J, Rozsa Z, Wolak A, Horvath LI, Farkas T, Horváth G (1987) Characteristics of Cu deficiency-induced inhibition of photosynthetic electron transport in spinach chloroplasts. Biochim Biophys Acta 891:75–84

    Article  CAS  Google Scholar 

  • Dubyak GR (2004) Ion homeostasis, channels and transporters: an update on cellular mechanisms. Adv Physiol Educ 28(1–4):143–154

    Article  PubMed  Google Scholar 

  • Duy D, Wanner G, Meda AR, von Wiren N, Soll J, Philippar K (2007) PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell 19(3):986–1006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eckholm E (1985) Study finds genetic damage in plants after atomic blast. The New York Times, August 9

    Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci 91:11–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664

    Article  CAS  PubMed  Google Scholar 

  • Falk KL, Tokuhisa JG, Gershenzon J (2007) The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanism. Plant Biol 9:573–581

    Article  PubMed  CAS  Google Scholar 

  • Fang ZY, Shao C, Meng YJ, Wu P, Chen M (2009) Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci 176:170–180

    Article  CAS  Google Scholar 

  • Feng H, Yan M, Li B, Shen Q, Miller AJ, Xu G (2011) Spatial expression and regulation of rice high affinity nitrate transporters by nitrogen and carbon status. J Exp Bot 62:2319–2233

    Article  PubMed  CAS  Google Scholar 

  • Fernando N, Pannozo J, Tusz M, Norton RM, Fitzgerald GJ, Myers S, Walker C, Stangoulis J, Seneweera S (2012) Wheat grain quality under increasing atmospheric CO2 concentrations in a semi-arid cropping system. J Cereal Sci 56:684–690

    Article  CAS  Google Scholar 

  • Fixen PE (1993) Crop responses to chloride. Adv Agron 50:107–150

    Article  CAS  Google Scholar 

  • Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NTAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48:427–439

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Läuchli A (1983) Sodium versus potassium substitution and compartmentation. In: Lauchli A, Bieleski RI (eds) Inorganic plant nutrition. Springer, Berlin, pp 651–681

    Google Scholar 

  • Flowers TJ, Hajibagheri MA, Yeo AR (1991) Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant Cell Environ 14:319–325

    Article  Google Scholar 

  • Fontes RLF, Cox FR (1995) Effect of sulfur supply on soybean plant exposed to zinc toxicity. J Plant Nutr 18:1893–1906

    Article  CAS  Google Scholar 

  • Forrest KL, Bhave M (2008) The PIP and TIP aquaporins in wheat form a large and diverse family with unique gene structures and functionally important features. Funct Integr Genomics 8(2):115–133

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franco-Zorrilla JM, Gonzalez F, Bustos R, Linhares F, Leyva A, Paz-Ares J (2004) Thetranscriptional control of plant responses to phosphate limitation. J Exp Bot 55:285–293

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Jarboe LR, Dickerson JA (2011) Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities. BMC Bioinforma 12:233

    Article  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate starvation-response in Arabidopsis. Curr Biol 15:2038–2943

    Article  PubMed  CAS  Google Scholar 

  • Gallardo K, Courty PE, Signor CL, Wipf D, Vernoud V (2014) Sulfate transporters in plant’s response to drought and salinity: regulation and possible functions. Front Plant Sci 5:580

    Article  PubMed  PubMed Central  Google Scholar 

  • Galon Y, Aloni R, Nachmias D, Snir O, Feldmesser E, Scrase-Field S, Boyce JM, Bouché N, Knight MR, Fromm H (2010) Calmodulin-binding transcription activator1 mediates auxin signaling and responds to stresses in Arabidopsis. Planta 232:165–172

    Article  PubMed  CAS  Google Scholar 

  • Gao N, Su Y, Min J, Shen W, Shi W (2010) Transgenic tomato over-expressing athmiRNA399d has enhanced phosphorus accumulation through increased acid phosphatase and proton secretion as well as phosphate transporter. Plant Soil 334:123–136

    Article  CAS  Google Scholar 

  • Garciadeblas B, Senn ME, Banulelos MA, Rodiriguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Molina A, Xing S, Huijser P (2014) A conserved KIN17 curved DNA-binding domain protein assembles with Squamosa promoter-binding protein like7 to adapt Arabidopsis growth and development to limiting copper availability. Plant Physiol 164(2):828–840

    Article  PubMed  CAS  Google Scholar 

  • Geberta M, Meschenmosera K, Svidovab S, Weghuberb J, Schweyen R, Eifler K, Lenz H, Weyand K, Knoop V (2009) A root- expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in low Mg2+ environments. Plant Cell 21(12):4018–4030

    Article  CAS  Google Scholar 

  • Ghosh M, Shen J, Rosen BP (1999) Pathway of As (III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96:5001–5006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gielen H, Remans T, Vangronsveld J, Cuypers A (2012) MicroRNA in metal stress: specific roles or secondary responses? Int J Mol Sci 13(2):15826–15847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gierth M, Maser P (2007) Potassium transporters in plants- involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581(12):2348–2356

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S, Bethke PC, Jones RL (1993) Calcium homeostasis in plants. J Cell Sci 106:453–456

    PubMed  CAS  Google Scholar 

  • Giri A, Heckathorn S, Mishra S, Krause C (2017) Heat stress decreases levels of nutrient uptake and assimilation proteins in tomato roots. Plants 6:6

    Article  PubMed Central  CAS  Google Scholar 

  • Gloser V, Zwieniecki MA, Orians CM, Holbrook NM (2007) Dynamic changes in root hydraulic properties in response to nitrate availability. J Exp Bot 58:2409–2415

    Article  PubMed  CAS  Google Scholar 

  • Goldstein AH, Baertlein DA, McDaniel RG (1988) Phosphate starvation inducible metabolism in Lycopersicon esculentum I. Excretion of acid phosphatase by tomato plants and suspension cultured cell. Plant Physiol 87:711–715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graham MA, Ramirez M, Valdes-Lopez O, Lara M, Tesfaye M, Vance CP, Hernandez G (2006) Identification of candidate phosphorus stress induced genes in Phaseolus vulgaris through cluster analysis across several plant species. Funct Plant Biol 33:787–797

    Article  Google Scholar 

  • Grennan AK (2011) Metallothioneins, a diverse protein family. Plant Physiol 155:1750–1751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochem Biophys Acta 1763:595–608

    Article  PubMed  CAS  Google Scholar 

  • Gueldry O, Lazard M, Delort F, Dauplais M, Grigoras I, Blanquet S, Plateau P (2003) YCF1p-dependent Hg(II) detoxification in Saccharomyces cerevisiae. Eur J Biochem 270:2486–2496

    Article  PubMed  CAS  Google Scholar 

  • Guest C, Schulze D, Thompson I, Huber D (2002) Correlating manganese X-ray near- edge structure spectra with extractable soil manganese. Soil Sci Soc Am J 66:1172–1181

    Article  CAS  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  PubMed  CAS  Google Scholar 

  • Guo B, Jin Y, Wussler C, Blancaflor EB, Motes CM, Versaw WK (2008) Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporter. New Phytol 177:889–898

    Article  PubMed  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hall JL, Williams LE (2003) Transitional meta transporter in plants. J Exp Bot 54(393):2601–2613

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transitional metals and diseases. Biochem J 219:1–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammond JP, Broadle MR, White PJ (2004) Genetic response to phosphorus deficiency. Ann Bot 94(3):323–332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanikenne M, Motte P, Wu MCS, Wang T, Loppes R, Matagne RF (2005) A mitochondrial half size ABC transporter is involved in Cd tolerance in Chlamydomonas reinhardtii. Plant Cell Environ 28(7):863–873

    Article  CAS  Google Scholar 

  • Haro R, Banuelos MA, Senn ME, Berrero-Gil J, Rodriguez-Navarro A (2005) HKT1 mediates sodium uniport in roots: pitfalls in the expression of HKT1 in yeast. Plant Physiol 139:1495–1506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haro R, Banuelos MA, Rodriguez-Navrro A (2010) High-affinity sodium uptake in land plants. Plant Cell Physiol 51(1):68–79

    Article  PubMed  CAS  Google Scholar 

  • Harper JF, Harmon A (2005) Plants, symbiosis and parasites: a calcium signaling connection. Nat Rev Mol Cell Biol 6:555–566

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hawkesford MJ (2000) Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency. J Exp Bot 51(342):131–138

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Ishikawa-Sakurai J, Murari-Hatano M, Arifa A, Uemura M (2015) Aquaporins in developing rice grains. Biosci Biotechnol Biochem 79(9):1422–1429

    Article  PubMed  CAS  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNA: small RNA with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  PubMed  CAS  Google Scholar 

  • Heneriques FS (1989) Effects of copper deficiency on photosynthetic apparatus of sugar beet (Beta vulgaris L.). J Plant Physiol 135:453–458

    Article  Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17(8):2142–2155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heuwinkel H, Kirkby EA, Le Bot J, Marschner H (1992) Phosphate deficiency enhances molybdenum uptake by tomato plants. J Plant Nutr 15:549–568

    Article  CAS  Google Scholar 

  • Himelblau E, Mira H, Lin SJ, Culotta VC, Penarrubia L, Amasino RM (1998) Identification of functional homolog of the yeast copper homeostasis gene ATX1 from the Arabidopsis. Plant Physiol 117:1227–1234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirschi KD, Zhen R-G, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci U S A 93:8782–8786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GI (2000) Expression of Arabidopsis CAX2 in tobacco altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ho C-H, Lin S-H, Hu H-C, Tsay Y-F (2009) CHL1 functions as a nitrate sensor in plants. Cell 138(6):1184–1194

    Article  PubMed  CAS  Google Scholar 

  • Hooijmaijers C, Rhee JY, Kwak KJ, Chung GC, Horie T, Katsuhara M, Kang H (2012) Hydrogen peroxide permeability of plasma membrane aquaporins of Arabidopsis thaliana. J Plant Res 125:147–153

    Article  PubMed  CAS  Google Scholar 

  • Horie T, Yoshida K, Nakayama H, Yamada K, Oki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transporters in Oryza sativa. Plant J 27:129–138

    Article  PubMed  CAS  Google Scholar 

  • Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+ starved roots for growth. EMBO J 26:3003–3014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huffman DL, O’Halloran TV (2001) Function, structure and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem 70:677–701

    Article  PubMed  CAS  Google Scholar 

  • Imsande J, Touraine B (1994) N demand and regulation of nitrate uptake. Plant Physiol 105:3–7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishikawa-Sakurai J, Hayashi H, Murai-Hatano M (2014) Nitrogen availability affects hydraulic conductivity of rice roots, possibly through changes in aquaporin gene expression. Plant Soil 379:389

    Article  CAS  Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H (2012) Characterising the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong D-H, Park S, Zhai J, Gurazada SGR, Paoli ED, Meyers BC, Green PJ (2011) Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell 23(12):4185–4207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia H, Pardob JM, Batellic G, Van Oostend MJ, Bressane RA, Lia X (2013) The salt overly sensitive (SOS) pathway: established and emerging role. Mol Plant 6(2):275–286

    Article  CAS  Google Scholar 

  • Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2017) WRKY transcription factors in plant response to stress. J Integr Plant Biol 54(2):86–107

    Article  CAS  Google Scholar 

  • Johanson U, Karlsson M, Johanson I, Gustavsson S, Siovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalyanaraman SB, Sivagurunathan P (1993) Effect of cadmium, copper and zinc on the growth of black gram. J Plant Nutr 16:2029–2042

    Article  CAS  Google Scholar 

  • Kannan S, Ramani S (1978) Studies on molybdenum absorption and transport in bean and rice. Plant Physiol 62(2):179–181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kataoka T, Hayashi N, Yamaya T, Takahashi H (2004a) Root-to-shoot transport of sulfate in Arabidopsis: evidence for role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol 136:4198–4204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004b) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693–2704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katsuhara M, Akiyama Y, Koshio K, Shibasaka M, Kasamo K (2002) Functional analysis of water channel in barley roots. Plant Cell Physiol 43:885–893

    Article  PubMed  CAS  Google Scholar 

  • Kavalchuk I, Abramov V, Pogribny I, Kovalchuk O (2004) Molecular aspects of plant adaptation to life in the Chernobyl zone. Plant Physiol 135:357–363

    Article  Google Scholar 

  • Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA395 and one of its target genes but in different cell types. Plant J 57(2):313–321

    Article  PubMed  CAS  Google Scholar 

  • Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high affinity potassium transporter activity. Plant Cell 10:51–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localisation of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:12951298

    Google Scholar 

  • Kim BG, Waadt R, Cheong YH, Pandey GK, Dominiguez-Solis JR, Schültke S, Lee SC, Kudla J, Luan S (2007) The calcium sensor CBL10 mediates salts tolerance by regulating ion homeostasis in Arabidopsis. Plant J 52:473–484

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Suzuki M, Inoue H, Itai RN, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) Expression of iron-acquisition-related genes in iron-deficient rice is coordinately induced by partially conserved iron-deficiency-responsive elements. J Exp Bot 56(415):1305–1316

    Article  PubMed  CAS  Google Scholar 

  • Kong WW, Yang ZM (2010) Identification of iron-deficiency responsive microRNA genes and cis-elements in Arabidopsis. Plant Physiol Biochem 48:153–159

    Article  PubMed  CAS  Google Scholar 

  • Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince AS, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F (2014) Nitrate transport and signalling in Arabidopsis. J Exp Bot 65(3):789–798

    Article  PubMed  CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic and cold stress. Plant Physiol 130:2129–2141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kronzucker HJ, Szczerba MW, Moazami-Goudarzi M, Britto DT (2006) The cytosolic Na+/K+ ratio does not explain salinity induced growth impairment in barley- a dual tracer study using 42K and 24Na. Plant Cell Environ 29:2228–2237

    Article  PubMed  CAS  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuo H-F, Chiou TJ (2011) The role of microRNA in phosphorus deficiency signaling. Plant Physiol 156(3):1016–1024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kupper H, Kupper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266

    Article  Google Scholar 

  • Kupper H, Kupper F, Spiller M (1998) In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth Res 58:123–133

    Article  CAS  Google Scholar 

  • Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G, Lill R (2001) A mutation of the ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13:89–100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langmeier M, Ginsburg S, Matile P (1993) Chlorophyll breakdown in senescent leaves- demonstration of Mg-dechelatase activity. Physiol Plant 89:347–353

    Article  CAS  Google Scholar 

  • Lanquar V, Lelievre F, Bolte S, Hamès C, Alcon C, Neumann D, Vansuyt G, Curie C, Schröder A, Krämer U, Barbier-Brygoo H (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role of HKT1 in sodium uptake by wheat roots. Plant J 32:139–149

    Article  PubMed  CAS  Google Scholar 

  • Leaky ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60(10):2859–2876. https://doi.org/10.1093/jxb/erp096

    Article  CAS  Google Scholar 

  • Leigh RA, Wyn-Jones RG (1986) Cellular compartmentation in plant nutrition: the selective cytoplasm and the promiscuous vacuole. In: Tinker B, Lauchli A (eds) Advances in plant nutrition 2. Praeger Scientific., New York, New York, pp 249–279

    Google Scholar 

  • Lelandais-Briere C, Sorin C, Declerck M, Benslimane A, Crespi M, Hartmann C (2010) Small RNA diversity in plants and its impact on development. Curr Genomics 11(1):14–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lemtiri-Chlieh F, MacRobbie EA, Webb AA, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich GD, Brearley CA (2003) Inositol hexakiphosphate mobilzes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci U S A 100:10091–10095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis S, Handy RD, Cordi B, Billinghurst Z, Depledge MH (1999) Stress proteins (HSPs): methods of detection and their use as an environmental biomarker. Ecotoxicology 8:351–368

    Article  CAS  Google Scholar 

  • Li L, Tutone AF, Drummond RSM, Gardner RC, Luan S (2001) A novel family of magnesium transport genes in Arabidopsis. Plant Cell 13:2761–2775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Wang Y, Okamoto M, Crawford NM, Siddiqui MY, Glass ADM (2007) Dissection of the ATNRT2;1, ATNRT2;2 inducible high affinity nitrate transporter gene cluster. Plant Physiol 143:425–433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Zhang Y, Li HM, Huang J, Li LG (2010) The Arabidopsis nitrate transporter NRT1;8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell 22:1633–1646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li P, Song A, Li Z, Fan F, Liang Y (2012) Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reaction in rice (Oryza sativa L.). Plant Soil 354(1):407–419

    Article  CAS  Google Scholar 

  • Li G, Tillard P, Gojon A, Maurel C (2016) Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1. Plant Cell Physiol 57(4):733–742

    Article  PubMed  CAS  Google Scholar 

  • Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62:1046–1057

    PubMed  CAS  Google Scholar 

  • Liang G, He H, Yu D (2012) Identification of nitrogen starvation responsive microRNAs in Arabidopsis thaliana. PLoS One 7(11):e48951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin CM, Koh S, Stacey G, Yu SM, Lin TY, Tsay YF (2000) Cloning and functional characterization of a constitutively expressed nitrate transporter gene OsNRT1, from rice. Plant Physiol 122:379–388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin WY, Lin SI, Chou TJ (2009) Molecular regulators of phosphate homeostasis in plants. J Exp Bot 60(5):1427–1438

    Article  PubMed  CAS  Google Scholar 

  • Lindhauer MG (1985) Influence of potassium nutrition and drought on water relations and growth of sunflower (Helianthus-annus L.). J Plant Nutr Soil Sci 148:654–669

    Google Scholar 

  • Little DY, Rao H, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE (2005) The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Natl Acad Sci U S A 102:13693–13698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu KH, Huang CY, Tsay YF (1999) CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11:865–874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu HY, Sun WN, Su WA, Tang ZC (2006) Co-regulation of water channels and potassium channels in rice. Physiol Plant 128:58–69

    Article  CAS  Google Scholar 

  • Liu HT, Li GL, Chang H, Sun DY, Zhou RG, Li B (2007) Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ 30:156–164

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Chang XJ, Ye Y, Xie WB, Wu P, Lian XM (2011) Comprehensive sequence analysis and whole life cycle expression profile analysis of the phosphate transporter gene family in rice. Mol Plant 4(6):1105–1122

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Simone EH, Li Y (2012) Nickel nutrition in plants, HS1191, Extension Service, Institute of Food and Agricultural Sciences, University of Florida

    Google Scholar 

  • Lu SY, Li YC, Guo ZF, Li BS, Li MQ (1993) Enhancement of drought resistance of rice seedlings by calcium. Chin J Rice 13:161–164

    Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156(3):1041–1046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stress. Soil Sci Plant Nutr 50:11–18

    Article  CAS  Google Scholar 

  • Ma JF, Shinada T, Matsuda C, Nomoto K (1995) Biosynthesis of phytosiderophores, mugineic acids, associated with methionine cycling. J Biol Chem 270:16549–16554

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In (ed) Silicon in agriculture

    Google Scholar 

  • Ma CL, Qi YP, Liang WW, Yang LT, Lu YB, Guo P, Ye X, Chen LS (2016) MicroRNA regulatory mechanisms on Citrus sinensis leaves to magnesium-deficiency. Front Plant Sci 7:201. https://doi.org/10.3389/fpls.2016.00201

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahajan S, Pandey GK, Tuteja N (2008) Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471:146–158

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993

    Article  PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004) Regulation of high affinity sulphate transporters in plants: towards systematic analysis of sulphur signaling and regulation. J Exp Bot 55:1843–1849

    Article  PubMed  Google Scholar 

  • Maser P, Thomine S, Schoeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF (2001) Phylogenetic relationship within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of Na+ transporter AtHKT1. FEBS Lett 531:157–161

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 200:1–46

    Article  PubMed  CAS  Google Scholar 

  • Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95(4):1321–1358

    Article  PubMed  CAS  Google Scholar 

  • Mei H, Cheng NH, Zhao J, Park S, Escareno RA, Pittman JK, Hirschi KD (2009) Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4. New Phytol 183:95–105

    Article  PubMed  CAS  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  PubMed  CAS  Google Scholar 

  • Millaleo R, Reyes-Diaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese is essential and toxic element in plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10(4):470–481

    Article  Google Scholar 

  • Miller AJ, Smith SJ (1996) Nitrate transport and compartmentation in cereal root cells. J Exp Bot 47:843–854

    Article  CAS  Google Scholar 

  • Mills RF, Peaston KA, Runions J, Williams LE (2012) HvHMA2, a P(1B)-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. PLoS One 7(8):e4260

    Article  CAS  Google Scholar 

  • Milner MJ, Seamon J, Craft F, Kochian LV (2013) Transport properties of members of ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64(1):369–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitra GN (2006) Nutrient management of crops in soils of Orissa. IFFCO, India

    Google Scholar 

  • Mitra GN (2015) Regulation of nutrient uptake by plants – a biochemical and molecular approach. Springer, India

    Google Scholar 

  • Mitra GN (2017) Essential plant nutrients and recent concept of their uptake in essential plant nutrients, uptake, use efficiency, and management. Springer, pp 3–36

    Chapter  Google Scholar 

  • Mitra GN, Sahu SK, Nayak RK (2009) Characterization of iron toxic soils of Orissa and ameliorating effects of potassium on iron toxicity. In: Proceedings of the IPI-OUAT-IPNI International Symposium, Bhubaneswar, Orissa, India, Vol-I: Invited Papers, p 215

    Google Scholar 

  • Miwa K, Fujiwara T (2010) Boron transport in plants: co-ordinated regulation of transporters. Ann Bot 105(7):1103–1108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monroy AF, Labbe E, Dhindsa RS (1997) Low temperature perception in plants: effects of cold on protein phosphorylation in cell free extracts. FEBS Lett 410:206–209

    Article  PubMed  CAS  Google Scholar 

  • Monshausen GB, Bibikova TN, Weisenseel MH, Gilory S (2009) Ca2+ regulates reactive oxygen species production and pH during mechano-sensing in Arabidopsis roots. Plant Cell 21:2341–2356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moomaw AS, Maguire ME (2008) The unique nature of Mg2+ channels. Physiology (Bethesda) 23:275–285

    CAS  Google Scholar 

  • Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Kapln J, Salt DE, Guerinot ML (2009) The ferro-protein metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21(10):3326–3338

    Google Scholar 

  • Morrissey I, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553–4567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis Ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223:1178–1190

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanism of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nagano AJ, Sato Y, Mihara M, Antonio BA, Motoyama R, Itoh H, Nagamura Y, Izawa T (2012) Deciphering and prediction of transcriptome dynamics under fluctuating field conditions. Cell 151:1358–1369

    Article  PubMed  CAS  Google Scholar 

  • Nevo Y, Nelson N (2006) The NRAMP family of metal ion transporters. Biochim Biophys Acta 1763:609–620

    Article  PubMed  CAS  Google Scholar 

  • Nguyen MX, Moon S, Jung KH (2013) Genome-wide expression analysis of rice aquaporin genes and development of a functional gene network mediated by aquaporin expression in roots. Planta 238(4):669–681

    Article  PubMed  CAS  Google Scholar 

  • Nilsson L, Muller R, Nielson TH (2007) Increased expression of the MYB-related transcription factor, PHR 1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ 30:1499–1512

    Article  PubMed  CAS  Google Scholar 

  • Nishida S, Tsuzuki C, Kato A, Aisu A, Yoshida J, Mizuno T (2011) AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol 52(8):1433–1442

    Article  PubMed  CAS  Google Scholar 

  • O’Halloran TV, Culotta VC (2000) Metal chaperones: an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060

    Article  PubMed  Google Scholar 

  • Ohama N, Kusakabe K, Mizoi J, Zhao H, Kidokoro S, Koizumi S, Takahashi F, Ishida T, Yanagisawa S, Shinozaki K, Yamaguchi-Shinozaki K (2016) The transcriptional cascade in the heat stress response of Arabidopsis is strictly regulated at the level of transcription factor expression. Plant Cell 28:181–201

    PubMed  CAS  Google Scholar 

  • Olsen KM, Wendel JF (2013) Crop plants as models for understanding plant adaptation and diversification. Front Plant Sci 4:290

    Article  PubMed  PubMed Central  Google Scholar 

  • Orsel M, Filleur S, Fraisier V, Daniel-Vedele F (2002) Nitrate transport in plants: which gene and which control? J Exp Bot 53(370):825–833

    Article  PubMed  CAS  Google Scholar 

  • Page V, Feller U (2005) Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Ann Bot 96:425–434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Page V, Weisskop L, Feller U (2006) Heavy metals in white lupin: uptake root-to-shoot transfer and redistribution within the plant. New Phytol 171:329–341

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Mock HP, Tanaka R, Kruse E, Grimm B (2000) Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol 122:1161–1169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69(2):278–288

    Article  PubMed  CAS  Google Scholar 

  • Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S (2008) Manganese efficiency in barley: identification and characterisation of the metal ion transporter HvIRT1. Plant Physiol 148:455–466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin HX, Luan S, Mäser P (2006) Nomenclature of HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374

    Article  CAS  PubMed  Google Scholar 

  • Plaxton WC, Podesta FE (2006) The functional organization and control of plant respiration. Crit Rev Plant Sci 25:159–198

    Article  CAS  Google Scholar 

  • Plaxton WC, Tran HT (2011) Metabolic adaptations of phosphate-starved plants. Plant Physiol 156:1006–1015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pleith C, Hansen UP, Knight H, Knight MR (1999) Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J 18:491–497

    Article  Google Scholar 

  • Plessis A, Hafemeister C, Wilkins O, Gonzaga ZJ, Meyer RS, Pires I, Müller C, Septiningsih EM, Bonneau R, Purugganan M (2015) Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions. eLife. pii: e08411.

    Google Scholar 

  • Poirier Y, Bucher M (2002) Phosphate transport and homeostasis in Arabidopsis. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. Am Soc Plant Biol, Rockville, pp 1–35

    Google Scholar 

  • Pokhrel R, McConnell IL, Brudvig GW (2011) Chloride regulation of enzyme turnover: application to the role of chloride in photosystem II. Biochemistry 50(4):2725–2734

    Article  PubMed  CAS  Google Scholar 

  • Polisensky DH, Braam J (1996) Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiol 111:1271–1279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prak S, Hem S, Boudet J, Viennois G, Sommer N, Rossignol M, Maurel C, Santoni V (2008) Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins. Role of sub-cellular trafficking of AtPIP2;1 in response to salt stress. Mol Cell Proteomics 7:1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Premachandra GS, Saneoka H, Ogata S (1991) Cell membrane stability and leaf water relations as affected by potassium nutrition of water-stressed maize. J Exp Bot 42:739–745

    Article  CAS  Google Scholar 

  • Prosser IM, Massonneau A, Smyth AJ, Waterhouse RN, Forde BG, Clarkson DT (2006) Nitrate assimilation in the forage legume Lotus japonicus L. Planta 223:821. https://doi.org/10.1007/s00425-005-0124-9

    Article  PubMed  CAS  Google Scholar 

  • Quaggiotti S, Ruperti B, Borsa P, Destro T, Malagoli M (2003) Expression of a putative high-affinity NO3 − transporter and of an H + -ATPase in relation to whole plant nitrate transport physiology in two maize genotypes differently responsive to low nitrogen availability. J Exp Bot 54(384):1023–1031

    Article  PubMed  CAS  Google Scholar 

  • Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ (2002) From genome to function: the Arabidopsis aquaporins. Genome Biol 3(1):res0001.1–res0001.17

    Google Scholar 

  • Rainer H (2012) Ion channels in plants. Physiol Rev 92(4):1777–1811

    Article  CAS  Google Scholar 

  • Reddy ASN, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell J 23(6):2010–2032

    Article  CAS  Google Scholar 

  • Reichman SM (2002) The response of plants to metal toxicity: a review focusing on copper, manganese and zinc, Occasional paper no. 14. Australian Minerals and Energy Research Foundation, Melbourne

    Google Scholar 

  • Reichmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  Google Scholar 

  • Reid R (2007) Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. Plant Cell Physiol 48:1673–1678

    Article  PubMed  CAS  Google Scholar 

  • Reid R, Fitxpstrick K (2009) Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiol 15(1):413–420

    Article  Google Scholar 

  • Remans T, Opdenakker K, Guisez Y, Carleer R, Schat H, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature. Environ Exp Bot 84:61–71

    Article  CAS  Google Scholar 

  • Ren BB, Wang M, Chen YP, Sun GM, Li Y, Shen QR, Guo SW (2015) Water absorption is affected by the nitrogen supply to rice plants. Plant Soil 396:397–410

    Article  CAS  Google Scholar 

  • Rengel Z, Robinson DL (1989) Competitive aluminum ion inhibition of net magnesium ion uptake by intact Lolium multiflorum roots. Plant Physiol 91:1407–1413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport system in plants. J Exp Bot 57:1149–1160

    Article  PubMed  CAS  Google Scholar 

  • Romheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180

    Article  CAS  Google Scholar 

  • Roux B, Berneche S, Egwolf B, Lev B, Noskov SY, Rowley CN, Yu H (2011) Ion selectivity in channels and transporters. J Gen Physiol 137(5):415–426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and unicellular algae. Genes Dev 15:2122–2133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold and high salinity stress conditions. Plant Physiol 136:2734–2746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporins and analysis of their expr3ssion and function. Plant Cell 46:1568–1577

    Article  CAS  Google Scholar 

  • Sancenon V, Puig S, Mira H, Thiele DJ, Penarubia L (2003) Identification of copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51:577–587

    Article  PubMed  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wiren N (2004) ZmYS1 functioned as a proton-coupled symporter for phytosiderophore and nicotianamine-chelated metals. J Biol Chem 279:9091

    Article  PubMed  CAS  Google Scholar 

  • Schachtman DP (2000) Molecular insights into the structure and function of plant K+ transport mechanisms. Biochim Biophys Acta 1465:127–139

    Article  PubMed  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:309–323

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T, Muller-Moule P, Munekage Y, Niyogi KK, Pilon M (2003) PAAI, a P-type ATPase of Arabidopsis functions in copper transport in chloroplast. Plant Cell 15:1333–1346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shinmachi F, Buchner P, Stroud JL, Parmar S, Zhao FJ, McGrath SP, Hawkesford MJ (2010) Influence of sulfur deficiency on the expression of specific sulfate transporter and the distribution of sulfur, selenium and molybdenum in wheat. Plant Physiol 153(1):327–336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817

    Article  PubMed  PubMed Central  Google Scholar 

  • Song WY, Zhang ZB, Shao HB, Guo XL, Cao HX, Zhao HB, Fu ZY, Hu XJ (2008) Relationship between calcium decoding elements and plant abiotic stress resistance. Int J Biol Sci 4:116–125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sonoda Y, Ikeda A, Saiki S, von Wiren N, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1; 3) in rice. Plant Cell Physiol 44(7):726–733

    Article  PubMed  CAS  Google Scholar 

  • Sperandio MVL, Santos LA, de Araujo OJL, Braga RP, Coelho CP, de Matos NE, Fernandes MS, de Souza SR (2014) Response of nitrate transporters and PM H+-ATPase expression to nitrogen flush on two upland rice varieties contrasting in nitrate uptake kinetics. Aust J Crop Sci 8(4):568–576

    CAS  Google Scholar 

  • Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y (2007) Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J 50:982–994

    Article  PubMed  CAS  Google Scholar 

  • Subbarao GV, Ito O, Berry WL, Wheeler RM (2003) Sodium: a functional plant nutrient. Crit Rev Plant Sci 22:391–416

    Google Scholar 

  • Subrahmanyam K, Verma RK, Naqvi AA, Singh DV (1992) Effect of forms of Sulphur on yield and quality of seed, oil and alkaloids of opium poppy (Papaver somniferum L.). Acta Horticult 306:431–435

    Article  Google Scholar 

  • Suenaga A, Moriya K, Sonoda Y, Ikeda A, von Wiren N, Hayakawa T, Yamaguchi J, Yamaya T (2003) Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol 44:206–211

    Article  PubMed  CAS  Google Scholar 

  • Suga S, Kamatsu S, Maeshima M (2002) Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant Cell Physiol 43:1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhun JK (2006) Post transcriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugineic acid family of phytosiderophores in zinc deficient barley. Plant J 48:85–97

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Tsukamoto Y, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66:609–617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, Von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1501

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan K, Keltjens WG, Findenegg GR (1991) Role of magnesium in combination with liming in alleviating aid soil stress with the aluminum-sensitive sorghum genotype CV323. Plant Soil 136:65–72

    Article  CAS  Google Scholar 

  • Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiiwara T (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20(10):2860–2875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang Z, Sadka A, Morishige DT, Muller JE (2001) Homeodomain leucine zipper proteins bind to the phosphate response domain of the soybean VspB tripartite promoter. Plant Physiol 125:797–809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teakle NL, Tyerman SD (2009) Mechanism of Cl (-) transport contributing to salt tolerance. Plant Cell Environ 33(4):566–589

    Article  PubMed  CAS  Google Scholar 

  • Teakle NL, Flowers T, Real D, Colmer T (2007) Lotus tenuis tolerates the interactive effects of salinity and water logging by ‘excluding’ Na+ and Cl- from the xylem. J Exp Bot 58:2169–2180

    Article  PubMed  CAS  Google Scholar 

  • Tesfaye M, Liu J, Allan DL, Vance CP (2007) Genomic and genetic control of phosphate stress in legumes. Plant Physiol 144:594–603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • The Nobel Prize in Chemistry (2003) The Royal Swedish Academy of Sciences, Information for the public, 8 October 2003

    Google Scholar 

  • TÓ§rnroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694. https://doi.org/10.1038/nature0431

    Article  Google Scholar 

  • Trevisan S, Borsa P, Botton A, Varotto S, Malagoli M, Ruperti B, Quaggiotti S (2008) Expression of two maize putative nitrate transporters in response to nitrate and sugar availability. Plant Biol (Stuttg) 10:462–475

    Article  CAS  Google Scholar 

  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300

    Article  PubMed  CAS  Google Scholar 

  • TSI (2008) Sulphur in Indian agriculture. The Sulphur Institute, Washington, DC

    Google Scholar 

  • Tsukada H, Hasegawa H, Hisamatsu S, Yamasaki S (2002) Rice uptake and distribution of radioactive 137Cs and !33Cs and K from soil. Environ Pollut 117:403–409

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui T, Yamaji N, Ma JF (2011) Identification of a Cis-acting element of ART1, a C2H2 type zinc finger transcription factor for aluminum tolerance in rice. Plant Physiol 156(2):925–931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuberosa R, Giuliani S, Parry MAJ, Araus JL (2007) Improving water use efficiency in Mediterranean agriculture: what limits the adoption of new technologies? Ann Appl Biol 2:157–162

    Article  Google Scholar 

  • Tuteja N (2007) Mechanism of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  PubMed  CAS  Google Scholar 

  • Ullrich C, Novacky A (1990) Extra inter cellular pH and membrane potential change induced by K+ and Cl-, H2PO4 − and NO3 − uptake and fusicoccin in root hairs of Limnobium stoloniferum. Plant Physiol 131:1561–1567

    Article  Google Scholar 

  • Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisae. Plant Physiol 122:1249–1259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valdes-Lopez O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP, Hernández G (2010) MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187:805–818

    Article  PubMed  CAS  Google Scholar 

  • van Der Luit AH, Olivari C, Haley A, Knight MR, Trewavas AJ (1999) Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol 121:705–714

    Article  PubMed Central  Google Scholar 

  • van Der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JAC, PJJ H (1999) Over-expression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Article  PubMed  PubMed Central  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptation by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh J, Yu TW, Gaston D, Park SW (2015) Molecular evolution and functional diversity of X-intrinsic protein gene in plants. Mol Gen Genomics 290:443–460

    Article  CAS  Google Scholar 

  • Versaw WK, Harrison MJ (2002) A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14:1751–1766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Brait JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Very A-A, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168–175

    Article  PubMed  CAS  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  CAS  PubMed  Google Scholar 

  • Walch-Liu P, Forde BG (2008) Nitrate signaling mediated by the NRT1;1 nitrate transporter antagonizes L-glutamate-induced changes in root architecture. Plant J 54(5):820–828. Epub 2008 Feb 7

    Article  PubMed  CAS  Google Scholar 

  • Walker CJ, Weinstein JD (1991) Further characterization of magnesium chelatase in isolated developing cucumber chloroplasts – substrate specificity, regulation, intactness, and ATP requirements. Plant Physiol 95:1189–1196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walley JW, Dehesh K (2010) Molecular mechanisms regulating rapid stress signaling networks in Arabidopsis. J Integr Biol 52:354–359

    Article  CAS  Google Scholar 

  • Walley JW, Coughlan S, Hudson ME, Covington MF, Kaspi R, Banu G, Harmer SL, Dehesh K (2007) Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLoS Genet 3:1800–1812

    Article  PubMed  CAS  Google Scholar 

  • Wang YH, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol 127:345–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminium is involved in silicon induced amelioration of aluminium toxicity in maize. Plant Physiol 136(3):3762–3770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang YJ, Yu JN, Chen T, Zhang ZG, Hao YJ, Zhang JS, Chen SY (2005) Functional analysis of a putative Ca2+ channel gene TaTPC1 from wheat. J Exp Bot 56:3051–3060

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013a) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Zhang C, Hao Q, Sha A, Zhou R, Zhou X, Yuan L (2013b) Elucidation of miRNAs mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes. PLoS One 8:e67423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wasaki J, Shinano T, Onishi K, Yonetani R, Yazaki J, Fujii F, Shimbo K, Ishikawa M, Shimatani Z, Nagata Y, Hashimoto A (2006) Transcriptonomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. J Exp Bot 57(9):2049–2059

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DM, Power IL (1995) Comparison of plant uptake and plant toxicity of various ions in wheat. Plant Soil 172:167–173

    Article  CAS  Google Scholar 

  • White PJ (2001) The pathway of calcium movement to the xylem. J Exp Bot 52:891–899

    Article  PubMed  CAS  Google Scholar 

  • White PJ (2003) Calcium in plants. Ann Bot 92(4):487–511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White PJ, Broadly MR (2000) Mechanism of Caesium uptake by plants. New Phytol 147:241–256

    Article  CAS  Google Scholar 

  • White P, Karley A (2010) Potassium. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients. Springer, Berlin, pp 199–224

    Chapter  Google Scholar 

  • Wiesenberger G, Steinleitner K, Malli R, Graier WF, Vormann J, Schweyen RJ, Stadler JA (2007) Mg2+ deprivation elicits rapid Ca2+ uptake and activates Ca2+/calcineurin signaling in Saccharomyces cerevisiae. Eukaryot Cell 6:592–599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilkins O, Hafemeister C, Plessis A, Holloway-Phillips MM, Pham GM, Nicotra AB, Gregorio GB, Jagadish K, Septiningsih EM, Bonneau R, Purugganan MD (2016) EGRINs (environmental gene regulatory influence networks) in rice that functions in the response to water deficit and agricultural environments. Plant Cell 28(10):2365–2384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams LE, Mills RF (2005) P1B ATPase-an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    Article  PubMed  CAS  Google Scholar 

  • Woods WG (1996) Review of possible boron speciation relating to its essentiality. J Trace Elem Exp Med 9:153–163

    Article  CAS  Google Scholar 

  • World Nuclear Association (2015) Nuclear radiation and health effects, Retrieved from world-nuclear.org. London

    Google Scholar 

  • Xu G, Magen H, Tarchtizky J, Kafkafi U (2000) Advances in chloride nutrition. Adv Agron 68:96–150

    Google Scholar 

  • Xu Z, Zhong S, Li X, Li W, Rothstein SJ, Zhang S, Bi Y, Xie C (2011) Genome wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS One 6(11):e28009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Biol 57:781–803

    Article  CAS  Google Scholar 

  • Yamaji N, Mitatni N, Ma JF (2008) A transporter regulating silicon distribution in rice shoot. Plant Cell 20:1381–1389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF (2009) A zinc-finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21:3339–3349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaji N, Chiba Y, Mitatni-Ueno N, Ma JF (2012) Functional characterisation of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol 160(3):1491–1497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasunari TJ, Stohl A, Hayans RS, Burkhart JF, Eckhardt S, Yasunari T (2011) Cesium-137 deposition and contamination of Japanese soils due to Fukushima nuclear accident. Proc Natl Acad Sci U S A 108:19530–19534

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087–2096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yong Z, Kotur Z, Glass ADM (2010) Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots. Plant J 63:739–748

    Article  PubMed  CAS  Google Scholar 

  • Yoo JH, Park CY, Kim JC, Do Heo W, Cheong MS, Park HC, Kim MC, Moon BC, Choi MS, Kang YH, Lee JH (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280:3697–3706

    Article  PubMed  CAS  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36(5):409–430

    Article  CAS  PubMed  Google Scholar 

  • Yue X, Zhao XY, Fei YK, Zhang X (2012) Correlation of aquaporins and transmembrane solute transporters revealed by genome-wide analysis in developing maize leaf. Comp Funct Genom 2012:546930. 14pp

    Article  CAS  Google Scholar 

  • Zhang H-X, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  PubMed  CAS  Google Scholar 

  • Zhang WJ, Zhang J, Liu F, Li GM, Guan JF (2001) The relationship between Ca2+ and drought resistance in plants. Chin Bull Bo 18:473–478

    CAS  Google Scholar 

  • Zhang DY, Ali Z, Wang CB, Xu L, Yi JX, Xu ZL, Liu XQ, He XL, Huang YH, Khan IA, Trethowan RM, Ma HX (2014) Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS One 9(1):10.1371

    Google Scholar 

  • Zhao XQ, Shen RF (2013) Interactive regulation of nitrogen and aluminum in rice. Plant Signal Behav 8(6):e24355

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao F, Bilsborrow PE, Evans EJ, Syers JK (1993) Sulphur turnover in the developing pods of single and double low varieties of oilseed rape (Brassica napus L.). J Sci Food Agric 62:111–119

    Article  CAS  Google Scholar 

  • Zhao FJ, Hawkesford MJ, McGrath SP (1999) Sulphur assimilation and effects on yield and quality of wheat. J Cereal Sci 30(1):1–17

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP, Kawkesford MJ (2001) Sulphur nutrition and the Sulphur cycle institute of arable crops. Rothamsted Experimental Station 2000–2001

    Google Scholar 

  • Zhao FJ, Fortune S, Barbosa VL, McGrath SP, Stobart R, Bilsborrow PE, Booth EJ, Brown A, Robson P (2006) Effects of Sulphur on yield and malting quality of barley. J Cereal Sci 43:369–377

    Article  CAS  Google Scholar 

  • Zhao M, Ding H, Zhu J-K, Zhang F, Li W-X (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190(4):906–915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wang J, He Y, Yang G (2012) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS One 7(12):e52439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zong H, Liu EE, Guo ZF, Li MQ (2000) Enhancement of drought resistance of rice seedlings. J S Chin Agric Univ 21:63–65

    Google Scholar 

Download references

Acknowledgments

The author acknowledges some information overlaps between this chapter and his book Regulation of Nutrient Uptake by Plants: A Biochemical and Molecular Approach, Springer (2015), and the first chapter of the book Essential Plant Nutrients, Springer (2017), to develop the current chapter in its proper sequence.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitra, G. (2018). Molecular Approaches to Nutrient Uptake and Cellular Homeostasis in Plants Under Abiotic Stress. In: Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B. (eds) Plant Nutrients and Abiotic Stress Tolerance. Springer, Singapore. https://doi.org/10.1007/978-981-10-9044-8_22

Download citation

Publish with us

Policies and ethics