Skip to main content
Log in

The PIP and TIP aquaporins in wheat form a large and diverse family with unique gene structures and functionally important features

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Aquaporins, members of major intrinsic proteins (MIPs), transport water across cellular membranes and play vital roles in all organisms. Adversities such as drought, salinity, or chilling affect water uptake and transport, and numerous plant MIPs are reported to be differentially regulated under such stresses. However, MIP genes have been not yet been characterized in wheat, the largest cereal crop. We have identified 24 PIP and 11 TIP aquaporin genes from wheat by gene isolation and database searches. They vary extensively in lengths, numbers, and sequences of exons and introns, and sequences and cellular locations of predicted proteins, but the intron positions (if present) are characteristic. The putative PIP proteins show a high degree of conservation of signature sequences or residues for membrane integration, water transport, and regulation. The TIPs are more diverse, some with potential for water transport and others with various selectivity filters including a new combination. Most genes appear to be expressed as expressed sequence tags, while two are likely pseudogenes. Many of the genes are highly identical to rice but some are unique, and many correspond to genes that show differential expression under salinity and/or drought. The results provide extensive information for functional studies and developing markers for stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barkla BJ, Vera-Estrella R, Pantoja O, Kirch H-H, Bohnert HJ (1999) Aquaporin localization—how valid are the TIP and PIP labels? Trends Plant Sci 4:86–88

    Article  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T (2006) Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc Natl Acad Sci USA 103:269–274

    Article  PubMed  CAS  Google Scholar 

  • Beuron F, Cahérec FL, Guillam M-T, Cavalier A, Garret A, Tassan J-P, Delamarche C, Schultz P, Mallouh V, Rolland J-P, Hubert J-F, Gouranton J, Thomas D (1995) Structural analysis of a MIP family protein from the digestive tract of Cicadella viridis. J Biol Chem 270:17414–17422

    Article  PubMed  CAS  Google Scholar 

  • Biela A, Grote K, Otto B, Hoth S, Hedrich R, Kaldenhoff R (1999) The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol. Plant J 18:565–570

    Article  PubMed  CAS  Google Scholar 

  • Brandizzi F, Frangne N, Marc-Martin S, Hawes C, Neuhaus JM, Paris N (2002) The destination for single-pass membrane proteins is influenced markedly by the length of the hydrophobic domain. Plant Cell 14:1077–1092

    Article  PubMed  CAS  Google Scholar 

  • Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta 199:372–381

    Article  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Jung R, Chrispeels MJ (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  PubMed  CAS  Google Scholar 

  • Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764

    Article  PubMed  CAS  Google Scholar 

  • Daniels MJ, Mirkov TE, Chrispeels MJ (1994) The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol 106:1325–1333

    Article  PubMed  CAS  Google Scholar 

  • Daniels MJ, Chaumont F, Mirkov TE, Chrispeels MJ (1996) Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell 8:587–599

    Article  PubMed  CAS  Google Scholar 

  • de Groot BL, Frigato T, Helms V, Grubmuller H (2003) The mechanism of proton exclusion in the aquaporin-1 water channel. J Mol Biol 333:279–293

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvorak J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454

    Article  CAS  Google Scholar 

  • Fetter K, Van Wilder V, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16:215–228

    Article  PubMed  CAS  Google Scholar 

  • Forrest KL, Bhave M (2007) Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct Integr Genomics 7:263–289

    Article  PubMed  CAS  Google Scholar 

  • Foster W, Helm A, Turnbull I, Gulati H, Yang B, Verkman AS, Skach WR (2000) Identification of sequence determinants that direct different intracellular folding pathways for aquaporin-1 and aquaporin-4. J Biol Chem 275:34157–34165

    Article  PubMed  CAS  Google Scholar 

  • Fotiadis D, Jenö P, Mini T, Wirtz S, Müller SA, Fraysse L, Kjellbom P, Engel A (2001) Structural characterization of two aquaporins isolated from native spinach leaf plasma membranes. J Biol Chem 276:1707–1714

    Article  PubMed  CAS  Google Scholar 

  • Froger A, Tallur B, Thomas D, Delamarche C (1998) Prediction of functional residues in water channels and related proteins. Protein Sci 7:1458–1468

    PubMed  CAS  Google Scholar 

  • Froger A, Rolland JP, Bron P, Lagree V, Le Caherec F, Deschamps S, Hubert JF, Pellerin I, Thomas D, Delamarche C (2001) Functional characterization of a microbial aquaglyceroporin. Microbiology 147:1129–1135

    PubMed  CAS  Google Scholar 

  • Fu D, Libson A, Miercke LJW, Weitzman C, Nollert P, Krucinski J, Stroud RM (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481–486

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Wang ZY, Lin H, Cui WE, Chen J, Liu M, Chen ZL, Qu LJ, Gu H (2006) Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Res 16:277–286

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson S, Lebrun A-S, Norden K, Chaumont F, Johanson U (2005) A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels. Plant Physiol 139:287–295

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Heller KB, Lin ECC, Wilson TH (1980) Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J Bacteriol 144:274–278

    PubMed  CAS  Google Scholar 

  • Heymann JB, Engel A (1999) Aquaporins: phylogeny, structure, and physiology of water channels. News Physiol Sci 14:187–193

    PubMed  CAS  Google Scholar 

  • Heymann JB, Engel A (2000) Structural clues in the sequences of the aquaporins. J Mol Biol 295:1039–1053

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Belcaid M, Ouellet F, Danyluk J, Monroy AF, Dryanova A, Gulick P, Bergeron A, Laroche A, Links MG, MacCarthy L, Crosby WL, Sarhan F (2006) Wheat EST resources for functional genomics of abiotic stress. BMC Genomics 7:149

    Article  PubMed  Google Scholar 

  • Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M (2005) Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett 579:5814–5820

    PubMed  CAS  Google Scholar 

  • Jauh GY, Phillips TE, Rogers JC (1999) Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11:1867–1882

    Article  PubMed  CAS  Google Scholar 

  • Johnson KD, Chrispeels MJ (1992) Tonoplast-bound protein kinase phosphorylates tonoplast intrinsic protein. Plant Physiol 100:1787–1795

    Article  PubMed  CAS  Google Scholar 

  • Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451–459

    Article  PubMed  CAS  Google Scholar 

  • Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000) The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta 1465:324–342

    Article  PubMed  CAS  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  PubMed  CAS  Google Scholar 

  • Jung JS, Preston GM, Smith BL, Guggino WB, Agre P (1994) Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J Biol Chem 269:14648–14654

    PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Fischer M (2006a) Aquaporins in plants. Acta Physiol 187:169–176

    Article  CAS  Google Scholar 

  • Kaldenhoff R, Fischer M (2006b) Functional aquaporin diversity in plants. Biochim Biophys Acta Biomembr 1758:1134–1141

    Article  CAS  Google Scholar 

  • Kammerloher W, Fischer U, Piechottka GP, Schäffner AR (1994) Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J 6:187–199

    Article  PubMed  CAS  Google Scholar 

  • Katsuhara M, Akiyama Y, Koshio K, Shibasaka M, Kasamo K (2002) Functional analysis of water channels in barley roots. Plant Cell Physiol 43:885–893

    Article  PubMed  CAS  Google Scholar 

  • Kawaura K, Mochida K, Yamazaki Y, Ogihara Y (2006) Transcriptome analysis of salinity stress responses in common wheat using a 22k oligo-DNA microarray. Funct Integr Genomics 6:132–142

    Article  PubMed  CAS  Google Scholar 

  • Kukulski W, Schenk AD, Johanson U, Braun T, de Groot BL, Fotiadis D, Kjellbom P, Engel A (2005) The 5 A structure of heterologously expressed plant aquaporin SoPIP2;1. J Mol Biol 350:611–616

    Article  PubMed  CAS  Google Scholar 

  • Lagrée V, Froger A, Deschamps S, Hubert J-F, Delamarche C, Bonnec G, Thomas D, Gouranton J, Pellerin I (1999) Switch from an aquaporin to a glycerol channel by two amino acids substitution. J Biol Chem 274:6817–6819

    Article  PubMed  Google Scholar 

  • Le Caherec F, Deschamps S, Delamarche C, Pellerin I, Bonnec G, Guillam MT, Thomas D, Gouranton J, Hubert JF (1996) Molecular cloning and characterization of an insect aquaporin functional comparison with aquaporin 1. Eur J Biochem 241:707–715

    Article  PubMed  Google Scholar 

  • Lian H-L, Yu X, Ye Q, Ding X, Kitagawa Y, Kwak S-S, Su W-A, Tang Z-C (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Turnbull IR, Bragin A, Carveth K, Verkman AS, Skach WR (2000) Reorientation of aquaporin-1 topology during maturation in the endoplasmic reticulum. Mol Biol Cell 11:2973–2985

    PubMed  CAS  Google Scholar 

  • Ma S, Quist TM, Ulanov A, Joly R, Bohnert HJ (2004) Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death. Plant J 40:845–859

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  • Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Physiol Plant Mol Biol 48:399–429

    Article  PubMed  CAS  Google Scholar 

  • Maurel C, Reizer JU, Schroeder JI, Chrispeels MJ (1993) The vacuolar membrane protein g-TIP creates water specific channels in Xenopus oocytes. EMBO J 12:2241–3347

    PubMed  CAS  Google Scholar 

  • Maurel C, Kado RT, Guern J, Chrispeels MJ (1995) Phosphorylation regulates the water channel activity of the seed-specific aquaporin a-TIP. EMBO J 14:3028–3035

    PubMed  CAS  Google Scholar 

  • Maurel C, Javot H, Lauvergeat V, Gerbeau P, Tournaire C, Santoni V, Heyes J (2002) Molecular physiology of aquaporins in plants. Int Rev Cytol 215:105–148

    PubMed  CAS  Google Scholar 

  • Mizutani M, Watanabe S, Nakagawa T, Maeshima M (2006) Aquaporin NIP2;1 is mainly localized to the ER membrane and shows root-specific accumulation in Arabidopsis thaliana. Plant Cell Physiol 47:1420–1426

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi M, Kav NNV, Deyholos MK (2007) Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes. Plant Cell Environ 30:630–645

    Article  PubMed  CAS  Google Scholar 

  • Morillon R, Lassalles J-P (2002) Water deficit during root development: effects on the growth of roots and osmotic water permeability of isolated root protoplasts. Planta 214:392–399

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu S, Mizuno T (1989) Nucleotide sequence of the region encompassing the glpKF operon and its upstream region containing a bent DNA sequence of Escherichia coli. Nucleic Acids Res 17:4378

    Article  PubMed  CAS  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  PubMed  CAS  Google Scholar 

  • Niemietz CM, Tyerman SD (1997) Characterization of water channels in wheat root membrane vesicles. Plant Physiol 115:561–567

    PubMed  CAS  Google Scholar 

  • Ott CM, Lingappa VR (2002) Integral membrane protein biosynthesis: why topology is hard to predict. J Cell Sci 115:2003–2009

    PubMed  CAS  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 88:11110–11114

    Article  PubMed  CAS  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  PubMed  CAS  Google Scholar 

  • Preston GM, Jung JS, Guggino WB, Agre P (1993) The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J Biol Chem 268:17–20

    PubMed  CAS  Google Scholar 

  • Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ (2001) From genome to function: the Arabidopsis aquaporins. Genome Biol 3:research0001.1–0001.17

    Article  Google Scholar 

  • Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7:211–221

    PubMed  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  PubMed  CAS  Google Scholar 

  • Santoni V, Verdoucq L, Sommerer N, Vinh J, Pflieger D, Maurel C (2006) Methylation of aquaporins in plant plasma membrane. Biochem J 400:189–197

    Article  PubMed  CAS  Google Scholar 

  • Schunmann PH, Ougham HJ (1996) Identification of three cDNA clones expressed in the leaf extension zone and with altered patterns of expression in the slender mutant of barley: a tonoplast intrinsic protein, a putative structural protein and protochlorophyllide oxidoreductase. Plant Mol Biol 31:529–537

    Article  PubMed  CAS  Google Scholar 

  • Shi LB, Skach WR, Ma TH, Verkman AS (1995) Distinct biogenesis mechanisms for the water channels MIWC and CHIP28 at the endoplasmic reticulum. Biochemistry 34:8250–8256

    Article  PubMed  CAS  Google Scholar 

  • Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P (2000) A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res 10:908–915

    Article  PubMed  CAS  Google Scholar 

  • Skach WR, Shi L, Calayag C, Frigeri A, Lingappa VR, Verkman AS (1994) Biogenesis and transmembrane topology of the CHIP28 water channel at the endoplasmic reticulum. J Cell Biol 125:803–815

    Article  PubMed  CAS  Google Scholar 

  • Sonnhammer EL, Koonin EV (2002) Orthology, paralogy and proposed classification for paralog subtypes. Trends Genet 18:619–620

    Article  PubMed  CAS  Google Scholar 

  • Suga S, Komatsu S, Maeshima M (2002) Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant Cell Physiol 43:1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Sui H, Han B-G, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  PubMed  CAS  Google Scholar 

  • Tajkhorshid E, Nollert P, Jensen MO, Miercke LJW, O’Connell J, Stroud RM, Schulten K (2002) Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296:525–530

    Article  PubMed  CAS  Google Scholar 

  • Thomas D, Bron P, Ranchy G, Duchesne L, Cavalier A, Rolland J-P, Raguenes-Nicol C, Hubert J-F, Haase W, Delamarche C (2002) Aquaglyceroporins, one channel for two molecules. Biochim Biophys Acta Bioenerg 1555:181–186

    Article  CAS  Google Scholar 

  • Törnroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694

    Article  PubMed  CAS  Google Scholar 

  • Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu D-T, Bligny R, Maurel C (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393–397

    Article  PubMed  CAS  Google Scholar 

  • Wahlberg JM, Spiess M (1997) Multiple determinants direct the orientation of signal-anchor proteins: the topogenic role of the hydrophobic signal domain. J Cell Biol 137:555–562

    Article  PubMed  CAS  Google Scholar 

  • Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol 135:1059–1068

    Article  PubMed  CAS  Google Scholar 

  • Wallace IS, Wills DM, Guenther JF, Roberts DM (2002) Functional selectivity for glycerol of the nodulin 26 subfamily of plant membrane intrinsic proteins. FEBS Lett 523:109–112

    Article  PubMed  CAS  Google Scholar 

  • Zardoya R (2005) Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97:397–414

    PubMed  CAS  Google Scholar 

  • Zardoya R, Villalba S (2001) A phylogenetic framework for the Aquaporin family in eukaryotes. J Mol Evol 52:391–404

    PubMed  CAS  Google Scholar 

  • Zhang W-H, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849–857

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

KF is supported by a Grains Research and Development Corporation (GRDC, Australia) Ph.D. scholarship. We gratefully acknowledge Dr. Greg Grimes (Australian Winter Cereals Collection, Tamworth, Australia) for providing the seed samples, Dr. Paula Moolhuijzen (State Agricultural Biotechnology Centre, Murdoch University, Western Australia) for advice on EST searches, and Prof. Rudi Appels (State Agricultural Biotechnology Centre, Western Australia) for advice on the project. We thank Damian Cockfield for confirming some of the DNA sequences. We are also thankful to the anonymous referees for their critical comments and suggestions, which helped in the revision of the manuscript greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal Bhave.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

Major differences between PIP1 and PIP2 isoforms of rice (DOC 21.5 kb)

Supplementary Table S2

Summary of PIP and TIP genes obtained through amplification of gDNA (DOC 30.0 kb)

Supplementary Table S3

Sequence identities of PIPs and TIPs of wheat with those of other plants (DOC 50 kb)

Supplementary Table S4

Highest sequence identity scores from ClustalW alignments {score for Cranbrook sequence}: entries indicate poor identity score for TC or EST, therefore, score from cDNA for the gene isolated from cv. Cranbrook was considered also (DOC 31.0 kb)

Supplemental Figure S1

Primer positions on wheat PIP and TIP cDNA sequences from Genbank. Black shading indicates positions of NPA motifs. Gray shading indicates positions of TMHs (DOC 26.0 kb)

Supplemental Figure S2

(DOC 21.0 kb)

Supplemental Figure S3

Sequence alignment of predicted PIP cDNAs (exon contigs) of genes cloned from gDNA of wheat (DOC 64.5 kb)

Supplemental Figure S4

Sequence alignment of predicted TIP cDNAs (exon contigs) of genes cloned from gDNA of wheat (DOC 74.5 kb)

Supplemental Figure S5

Alignment of putative amino acids sequences of wheat PIPs with aquaporins, a glycerol facilitator, and an aquaglyceroporin (DOC 119 kb)

Supplemental Figure S6

Alignment of putative amino acids sequences of wheat TIPs with other aquaporins, a glycerol facilitator, and an aquaglyceroporin (DOC 81.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forrest, K.L., Bhave, M. The PIP and TIP aquaporins in wheat form a large and diverse family with unique gene structures and functionally important features. Funct Integr Genomics 8, 115–133 (2008). https://doi.org/10.1007/s10142-007-0065-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-007-0065-4

Keywords

Navigation