Skip to main content

Function(s)/Role(s) of Polyphenol Oxidases

  • Chapter
  • First Online:
Polyphenol Oxidases (PPOs) in Plants

Abstract

Plants under native conditions are exposed to different abiotic and biotic stresses that impact the plant fitness either individually or together. Under majority of situations, the plants possess a diverse range of defense traits that help in reducing or eliminating the effects of these stresses. The secondary metabolites that include defense-related proteins play a major role in plant defense. Generally, spatial and temporal differences are observed with occurrence of biotic and abiotic stresses. Additionally, multiple stresses might impact the plant growth simultaneously; therefore, plant defense mechanisms must exhibit plasticity to combat these different stresses. The flexibility of secondary metabolites is due to (i) their role in defense against several stresses both biotic and abiotic and (ii) they are inducible, i.e., secondary metabolites are only expressed or expressed under stress (Thipyapong et al. 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alba-Meraz A, Choe HT (2002) Systemic effects on oxidative enzymes in Phaseolus vulgaris leaves that have been wounded by the grasshopper Melanoplus differentialis (Thomas) or have had a foliar application of jasmonic acid. Int J Plant Sci 163:317–328

    Article  CAS  Google Scholar 

  • Araji S, Grammer TA, Gertzen R, Anderson SD, Mikulic-Petkovsek M, Veberic R, Phul ML, Solar A, Leslie CA, Dandekar AM, Escobar MA (2014) Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiol 164:1191–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagal UR, Leebens-Mack JH, Lorenz WW, Dean JFD (2012) The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm-specific lineage. BMC Genomics 13(S3):1–9

    Google Scholar 

  • Balakumar T, Gayathri B, Anbudurai PR (1997) Oxidative stress injury in tomato plants induced by supplemental UV-B radiation. Biol Plant 39:215–221

    Article  CAS  Google Scholar 

  • Barbehenn RV, Jones CP, Yip L, Tran L, Constabel CP (2007) Does the induction of polyphenol oxidase defendtrees against caterpillars? Assessing defenses one at a time with transgenic poplar. Oecologia 154:129–400

    Article  PubMed  Google Scholar 

  • Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P (2009) Defensive role of tomato polyphenol oxidases againstcotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J Chem Ecol 35:28–38

    Article  CAS  PubMed  Google Scholar 

  • Biehler K, Fock H (1996) Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol 112:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boss PK, Gardner RC, Janssen B, Ross GS (1995) An apple polyphenol oxidase cDNA is up-regulated in wounded tissues. Plant Mol Biol 27:429–433

    Article  CAS  PubMed  Google Scholar 

  • Bergey DR, Howe GA, Ryan CA (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci USA 93:12053–12058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castanera P, Steffens JC, Tingey WM (1996) Biological performance of Colorado potato beetle larvae on potato genotypes with differing levels of polyphenol oxidase. J Chem Ecol 22:91–101

    Article  CAS  PubMed  Google Scholar 

  • Chang-Quan W, Heng S, Xiang-Zhong G, Qin-Guang H, Feng L, Bao-Shan W (2007) Correlation of tyrosinase activity and betacyanin biosynthesis induced by dark in C-3 halophyte Suaeda salsa seedlings. Plant Sci 173:487–494

    Article  CAS  Google Scholar 

  • Chen C, Belanger RR, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Pathol 56:13–23

    Article  CAS  Google Scholar 

  • Cho MH, Moinuddin SGA, Helms GL, Hishiyama S, Eichinger D, Davin LB, Lewis NG (2003) (+)-Larreatricin hydroxylase, an enantio-specific polyphenol oxidase from the creosote bush (Larrea tridentata). Proc Natl Acad Sci U.S.A 100:10641–10646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA (2005) Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Natl Acad Sci USA 102:19237–19242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christopher ME, Miranda M, Major IT, Constabel CP (2004) Gene expression profiling of systemically wound-induced defenses in hybrid poplar. Planta 219:936–947

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty U, Chakraborty N (2005) Impact of environmental factors on infestation of tea leaves by Helopeltis theivora, and associated changes in flavonoid flavor components and enzyme activities. Phytoparasitica 33:88–96

    Article  CAS  Google Scholar 

  • Constabel CP, Barbehenn R (2008) Defensive roles of polyphenol oxidase in plants. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Heidelberg, pp 253–270

    Chapter  Google Scholar 

  • Constabel CP, Ryan CA (1998) A survey of wound- and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochemistry 47:507–511

    Article  CAS  Google Scholar 

  • Constabel CP, Bergey DR, Ryan CA (1995) Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci USA 92:407–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constabel CP, Yip L, Patton JJ, Christopher ME (2000) Polyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiol 124:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craigo J, Callahan M, Huang RCC, Delucia AL (2000) Inhibition of human papilloma virus type16 gene expression by nordihydroguaiaretic acid plant lignan derivatives. Antiviral Res 47:19–28

    Article  CAS  PubMed  Google Scholar 

  • Deborah SD, Palaniswami A, Vidhyasekaran P, Velazhahan R (2001) Time-course study of the induction of defense enzymes, phenolics and lignin in rice in response to infection by pathogen and non-pathogen. J Plant Dis Protect 108:204–216

    CAS  Google Scholar 

  • Ebrahimzadeh H, Abrishamchi P (2001) Changes in IAA, phenolic compounds, peroxidase, IAA oxidase, and polyphenol oxidase in relation to flower formation in Crocus sativus. Russian J Plant Physiol 48:190–195

    Article  CAS  Google Scholar 

  • English-Loeb G, Stout MJ, Duffey SS (1997) Drought stress in tomatoes: changes in plant chemistry and potential nonlinear consequences for insect herbivores. Oikos 79:456–468

    Article  Google Scholar 

  • Elakovich SD, Stevens KL (1985) Phytotoxic properties of nordihydroguaiaretic acid,a lignan from Larrea tridentata (creosote bush). J Chem Ecol 11:27–33

    Article  CAS  PubMed  Google Scholar 

  • Escobar MA, Shilling A, Higgins P, Uratsu SL, Dandekar AM (2008) Characterization of polyphenol oxidase from walnut. J Am Soc Hortic Sci 133:852–858

    Google Scholar 

  • Escudero NL, De Arellano ML, Fernández S, Albarracín G, Mucciarelli S (2003) Taraxacum officinale as a food source. Plant Food Hum Nutr 58:1–10

    Article  Google Scholar 

  • Felton GW, Donato K, Delvecchio RJ, Duffey SS (1989) Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J Chem Ecol 15:2667–2694

    Article  CAS  PubMed  Google Scholar 

  • Felton GW, Duffey SS (1992) Avoidance of antinutritive plant defense: role of midgut pH in Colorado potato beetle. J Chem Ecol 18:571–583

    Article  CAS  PubMed  Google Scholar 

  • Felton GW, Donato KK, Broadway RM, Duffey SS (1992) Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore, Spodoptera exigua. J Insect Physiol 38:277–285

    Article  CAS  Google Scholar 

  • Felton GW, Summers CB, Mueller AJ (1994) Oxidative responses in soybean foliage to herbivory by bean leaf beetle and three-cornered alfalfa hopper. J Chem Ecol 20:639–650

    Article  CAS  PubMed  Google Scholar 

  • Franke R, Humphreys JM, Hemm MR, Denault JW, Ruegger MO, Cusumano JC, Chapple C (2002) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J 30:33–45

    Article  CAS  PubMed  Google Scholar 

  • Friedman M (1997) Chemistry, biochemistry, and dietary role of potato polyphenols. J Agric Food Chem 45:1523–1540

    Article  Google Scholar 

  • Fuerst EP, Okubara PA, Anderson JV, Morris CF (2014) Polyphenoloxidase as a biochemical seed defense mechanism. Front Plant Sci 5:689

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujita S, Saari NB, Maegawa M, Tetsuka T, Hayashi N, Tono T (1995) Purification and properties of polyphenol oxidase from cabbage (Brassica oleracea L.) J Agric Food Chem 43:1138–1142

    Article  CAS  Google Scholar 

  • Fujita S, Saari NB, Maegawa M, Samura N, Hayashi N, Tono T (1997) Isolation and characterization of two phloroglucinol oxidases from cabbage (Brassica oleracea L.) J Agric Food Chem 45:59–63

    Article  CAS  Google Scholar 

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156:145–169

    Article  CAS  Google Scholar 

  • Gao ZJ, Han XH, Xiao XG (2009) Purification and characterisation of polyphenoloxidase from red Swiss chard (Beta vulgaris sub species cicla) leaves. Food Chem 117:342–348

    Article  CAS  Google Scholar 

  • Gnabre JN, Brady JN, Clanton DJ, Ito Y, Dittmer J, Bates RB, Huang RC (1995) Inhibition of human immunodeficiency virus type 1 transcription and replication by DNA sequence-selective plant lignans. PNAS 92(24):11239–11243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldbeck JH, Cammarata KV (1981) Spinach thylakoid polyphenol oxidase. Isolation, activation, and properties of the native chloroplast enzyme. Plant Physiol 67:977–984

    Article  Google Scholar 

  • Goldman MHS, Seurinck J, Marins M, Goldman GH, Mariani CA (1998) Tobacco flower-specific gene encodes a polyphenol oxidase. Plant Mol Biol 36:479–485

    Article  CAS  PubMed  Google Scholar 

  • Haruta M, Pedersen JA, Constabel CP (2001) Polyphenol oxidase and herbivore defense in trembling aspen (Populus tremuloides): cDNA cloning, expression, and potential substrates. Physiol Plant 112:552–558

    Article  CAS  PubMed  Google Scholar 

  • Hatlestad GJ, Sunnadeniya RM, Akhavan NA, Gonzalez A, Goldman IL, Mcgrath JM, Lloyd AM (2012) The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat Genet 44:816–820

    Article  CAS  PubMed  Google Scholar 

  • Hunt MD, Eannetta NT, Yu HF, Newman SM, Steffens JC (1993) cDNA cloning and expression of potato polyphenol oxidase. Plant Mol Biol 21:59–68

    Article  CAS  PubMed  Google Scholar 

  • Johal GS, Gray J, Gruis D, Briggs SP (1995) Convergent insights into mechanism determining disease and resistance response in plant-fungal interactions. Can J Bot 73:S468–S474

    Article  Google Scholar 

  • Joy RW, Sugiyama M, Fukuda H, Komamine A (1995) Cloning and characterization of polyphenol oxidase cDNAs of Phytolacca americana. Plant Physiol 107:1083–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaintz C, Molitor C, Thill J, Kampatsikas I, Michael C, Halbwirth H, Rompel A (2014) Cloning and functional expression in E. coli of a polyphenol oxidase transcript from Coreopsis grandiflora involved in aurone formation. FEBS Let 588:3417–3426

    Article  CAS  Google Scholar 

  • Kavitha R, Umesha S (2008) Regulation of defense-related enzymes associated with bacterial spot resistance in tomato. Phytoparasitica 36:144–159

    Article  CAS  Google Scholar 

  • Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW (2000) Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2002) Manduca quinquemaculata’s optimization of intra-plant oviposition to predation, foodquality, and thermal constraints. Ecology 83:2346–2354

    Article  Google Scholar 

  • Kojima M, Takeuchi W (1989) Detection and characterization of p-coumaric acid hydroxylase in mungbean, Vigna mungo, seedlings. J Biochem 105:265–270

    Article  CAS  PubMed  Google Scholar 

  • Kowalski SP, Eannetta NT, Hirzel AT, Steffens JC (1992) Purification and characterization of polyphenol oxidase from glandular trichomes of Solanum berthaultii. Plant Physiol 100:677–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruzmane D, Jankevica L, Ievinsh G (2002) Effect of regurgitant from Leptinotarsa decemlineata on wound responses in Solanum tuberosum and Phaseolus vulgaris. Physiol Plant 115:577–584

    Article  CAS  PubMed  Google Scholar 

  • Lavid N, Schwartz A, Lewinsohn E, Tel-Or E (2001) Phenols and phenol oxidases are involved in cadmium accumulation in the water plants Nymphoides peltata (Menyanthaceae) and Nymphaeae (Nymphaeaceae). Planta 214:189–195

    Article  CAS  PubMed  Google Scholar 

  • Li L, Steffens JC (2002) Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215:239–247

    Article  CAS  PubMed  Google Scholar 

  • Lorrain S, Vailleau F, Balaque C, Roby D (2003) Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 8:263–271

    Article  CAS  PubMed  Google Scholar 

  • Macheix J, Fleuriet A, Billot J (1990) Phenolic compounds in fruit processing. In: Macheix J, Fleuriet A, Billot J (eds) Fruit Phenolics. CRC Press, Boca Raton, pp 239–312

    Google Scholar 

  • Major IT, Constabel CP (2006) Molecular analysis of poplar defense against herbivory. Comparison of wound- and insect elicitor-induced gene expression. New Phytol 172:617–635

    Article  CAS  PubMed  Google Scholar 

  • Maki H, Morohashi Y (2006) Development of polyphenol oxidase activity in the micropylar endosperm of tomato seeds. J Plant Physiol 163:1–10

    Article  CAS  PubMed  Google Scholar 

  • Mari S, Marques L, Breton F, Karamanos Y, Macheix J (1998) Unfolding and refolding of active apple polyphenol oxidase. Phytochem 49:1213–1217

    Article  CAS  Google Scholar 

  • Mason HS, Peterson EW (1965) MeIanoproteins. I. Reactions between enzyme-generated quinones and amino acids. Biochim Biophys Acta 111:134–146

    Article  CAS  PubMed  Google Scholar 

  • Matheis G, Whitaker JR (1984) Modification of proteins by polyphenol oxidase and peroxidase and their products. J Food Biochem 8:137–162

    Article  CAS  Google Scholar 

  • Martinez MV, Whitaker JR (1995) The biochemistry and control of enzymatic browning. Trends Food Sci Technol 6:195–200

    Article  CAS  Google Scholar 

  • Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67:2318–2331

    Article  CAS  PubMed  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenol oxidases in plants. Phytochemistry 18:193–215

    Article  CAS  Google Scholar 

  • Mayer AM, Harel E (1991) Phenoloxidases and their significance in fruit and vegetables. In: Fox PF (ed) Food enzymology. Elsevier, New York, pp 373–398

    Google Scholar 

  • McDonald RW, Bunjobpon W, Liu T, Fessler S, Pardo OE, Freer IKA, Glaser M, Seckl MJ, Robins DJ (2001) Synthesis and anti cancer activity of nordihydroguaiaretic acid (NDGA) and analogues. Anti-Cancer Drug Des 16:261–270

    CAS  Google Scholar 

  • Melo GA, Shimizu MM, Mazzafera P (2006) Polyphenoloxidase activity in coffee leaves and its role in resistance against coffee leaf miner and coffee leaf rust. Phytochemistry 67:277–285

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Yonekura-Sakakibara K, Sato T, Kikuchi S, Fukui Y, Fukuchi-Mizutani M, Ueda T, Nakao M, Tanaka Y, Kusumi T, Nishino T (2000) Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Science 290:1163–1166

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Soto T, Fukui Y, Yonekura-Sakakibara K, Hayashi H, Tanaka Y, Kusumi T, Nishino T (2001) Specificity analysis and mechanism of aurone synthesis catalyzed by aurenusidin synthase, a polyphenol oxidase homolog responsible for flower coloration. FEBS Lett 499:107–111

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuka T, Yamada E, Takahashi H, Imamura T, Suzuki M, Ozeki Y, Tsujimura I, Saito M, Sakamoto Y, Sasaki N, Nishihara M (2013) Genetic engineering of yellow betalain pigments beyond the species barrier. Sci Rep 3:1070

    Article  Google Scholar 

  • Ngazee E, Icishahayo D, Coutinho TA, Van der Waals JE (2012) Role of polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, chlorogenic acid, and total soluble phenols in resistance of potatoes to soft rot. Plant Dis 96:186–192

    Article  CAS  Google Scholar 

  • Niknam V, Razavi N, Ebrahimzadeh H, Sharifizadeh B (2006) Effect of NaCl on biomass, protein and proline contents, and antioxidant enzymes in seedlings and calli of two Trigonella species. Biol Plant 50:591–596

    Article  CAS  Google Scholar 

  • Ono E, Hatayama M, Isono Y, Sato T, Watanabe R, Yonekura-Sakakibara K, Fukuchi-Mizutani M, Tanaka Y, Kusumi T, Nishino T, Nakayama T (2006) Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles. Plant J 45:133–143

    Article  CAS  PubMed  Google Scholar 

  • Rahman ANF, Ohta M, Nakatani K, Hayashi N, Fujita S (2012) Purification and characterization of polyphenol oxidase from cauliflower (Brassica oleracea L.) J Agric Food Chem 60(14):3673–3678

    Article  CAS  PubMed  Google Scholar 

  • Raj SN, Sarosh BR, Shetty HS (2006) Induction and accumulation of polyphenol oxidase activities as implicated in development of resistance against pearl millet downy mildew disease. Funct Plant Biol 33:563–571

    Article  CAS  Google Scholar 

  • Ralph S, Oddy C, Cooper D et al (2006) Genomics of hybrid poplar (Populus trichocarpa x deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and full length cDNA libraries, expressed sequence tags, and cDNA microarray for the study of insect induced defences in poplar. Mol Ecol 15:1275–1297

    Article  PubMed  Google Scholar 

  • Ray H, Hammerschmidt R (1998) Responses of potato tuber to infection by Fusarium sambucinum. Physiol Mol Plant Path 53:81–92

    Article  CAS  Google Scholar 

  • Redman AM, Cipollini DF, Schultz JC (2001) Fitness costs of jasmonic acid-induced defense in tomato, Lycopersicon esculentum. Oecologia 126:380–385

    Article  PubMed  Google Scholar 

  • Ren F, Lu YT (2006) Overexpression of tobacco hydroxyproline-rich glycopeptide systemin precursor A gene in transgenic tobacco enhances resistance against Helicoverpa armigera larvae. Plant Sci 171:286–292

    Article  CAS  Google Scholar 

  • Richter C, Dirks ME, Gronover CS, Prüfer D, Moerschbacher BM (2012) Silencing and heterologous expression of ppo-2 indicate a specific function of a single polyphenol oxidase isoform in resistance of dandelion (Taraxacum officinale) against Pseudomonas syringae pv. tomato. MPMI 25(2):200–210

    Article  CAS  PubMed  Google Scholar 

  • Ruuhola T, Yang S (2006) Wound-induced oxidative responses in mountain birch leaves. Ann Bot 97:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Nakayama T, Kikuchi S, Fukui Y, Yonekura-Sakakibara K, Ueda T, Nishino T, Tanaka Y, Kusumi T (2001) Enzymatic formation of aurones in the extracts of yellow snapdragon flowers. Plant Sci 160:229–236

    Article  CAS  PubMed  Google Scholar 

  • Saluja D, Sachar RC (1982) GA,-modulated multiple forms of monophenolase in wheat seed. Phytochem 21:2625–2631

    Article  CAS  Google Scholar 

  • Sherman TD, Vaughn KC, Duke SO (1991) A limited survey of the phylogenetic distribution of polyphenol oxidase. Phytochemistry 30:2499–2506

    Article  CAS  Google Scholar 

  • Shivishankar S (1988) Polyphenol oxidase isozymes in coconut genotypes under water stress. Plant Physiol Biochem 15:87–91

    Google Scholar 

  • Soler-Rivas C, Arpin N, Olivier JM, Wichers HJ (1997) Activation of tyrosinase in Agaricus bisporus strains following infection by Pseudomonas tolaasii or treatment with a tolaasin-containing preparation. Mycol Res 101:375–382

    Article  CAS  Google Scholar 

  • Sommer A, Néeman E, Steffens JC, Mayer AM, Harel E (1994) Import, targeting and processing of a plant polyphenol oxidase. Plant Physiol 105:1301–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens JC, Harel E, Hunt MD (1994) Polyphenol oxidase. In: Genetic engineering of plant secondary metabolism (BE Ellis, GW Kuroki, HA Stafford (eds) Plenum Press, New York, pp. 276–304

    Google Scholar 

  • Steiner U, Schliemann W, Bohm H, Strack D (1999) Tyrosinase involved in betalain biosynthesis of higher plants. Planta 208:114–124

    Article  CAS  Google Scholar 

  • Stewart-Wade SM, Neumann S, Collins LL, Boland GJ (2002) The biology of Canadian weeds. 117. Taraxacum officinale G. H. Weber ex Wiggers. Can J Plant Sci 82:825–853

    Article  Google Scholar 

  • Stout MJ, Workman KV, Bostock RM, Duffey SS (1998) Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia 113:74–81

    Article  Google Scholar 

  • Sullivan ML (2015) Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism. Front Plant Sci 5:783

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivan ML, Hatfield RD (2006) Polyphenol oxidase and o-diphenols inhibit postharvest proteolysis in red clover and alfalfa. Crop Sci 46:662–670

    Article  CAS  Google Scholar 

  • Sullivan ML, Hatfield RD, Thoma SL, Samac DA (2004) Cloning and characterization of red clover polyphenol oxidase cDNAs and expression of active protein in Escherichia coli and transgenic alfalfa. Plant Physiol 136:3234–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaler JS, Fidantsef AL, Duffey SS, Bostock RM (1999) Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. J Chem Ecol 25:1597–1609

    Article  CAS  Google Scholar 

  • Thaler JS, Karban R, Ullman DE, Boege K, Bostock RM (2002) Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites. Oecologia 131:227–235

    Article  PubMed  Google Scholar 

  • Thipyapong P, Hunt MD, Steffens JC (1995) Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase. Phytochem 40:673–676

    Article  CAS  Google Scholar 

  • Thipyapong P, Steffens JC (1997) Tomato polyphenol oxidase: differential response of the polyphenol oxidase F promoter to injuries and wound signals. Plant Physiol 115:409–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thipyapong P, Hunt MD, Steffens JC (2004) Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta 220:105–117

    Article  CAS  PubMed  Google Scholar 

  • Thipyapong P, Stout MJ, Attajarusit J (2007) Functional analysis of polyphenol oxidases by antisense/sense technology. Molecules 12:1569–1595

    Article  CAS  PubMed  Google Scholar 

  • Timmermann BN (1977) In: Mabry TJ, Hunziker JH, DiFeo DR Jr (eds) Creosote bush: biology and chemistry of Larrea in New World Deserts. Dowden, Hutchinson & Ross, Stroudsburg, pp 252–276

    Google Scholar 

  • Tolbert NE (1973) Activation of polyphenol oxidase of chloroplasts. Plant Physiol 51:234–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Train P, Henrichs JR, Archer WA (1941) Medicinal uses of plants by Indian tribes of Nevada. U.S. Department of Agriculture, Washington, DC

    Book  Google Scholar 

  • Trebst A, Depka B (1995) Polyphenol oxidase and photosynthesis research. Photosynth Res 46:41–44

    Article  CAS  PubMed  Google Scholar 

  • Tscharntke T, Thiessen S, Dolch R, Boland W (2001) Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochem Syst Ecol 29:1025–1047

    Article  CAS  Google Scholar 

  • Vamos-Vigyazo L (1981) Polyphenol oxidase and peroxidase in fruits and vegetables. Crit Rev Food Sci Nutr 15:49–127

    Article  CAS  PubMed  Google Scholar 

  • Vanitha SC, Niranjana SR, Umesha S (2009) Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato. J Phytopathol 157:552–557

    Article  CAS  Google Scholar 

  • Vaughn KC, Duke SO (1981) Tissue localization of polyphenol oxidase in sorghum. Protoplasma 108:319–327

    Article  CAS  Google Scholar 

  • Vaughn KC, Duke SO (1982) Tentoxin effects on sorghum: the role of polyphenol oxidase. Protoplasma 110:48–53

    Article  CAS  Google Scholar 

  • Vaughn KC, Duke SO (1984) Function of polyphenol oxidase in higher plants. Physiol Plant 60:106–112

    Article  CAS  Google Scholar 

  • Vaughn KC, Lax AR, Duke SO (1988) Polyphenol oxidase: the chloroplast oxidase with no established function. Physiol Plant 72:659–665

    Article  CAS  Google Scholar 

  • Waller CW, Gisvold O (1945) A phytochemical investigation of Larrea divaricata Cav. J Am Pharm Assoc 34:78–81

    Article  CAS  Google Scholar 

  • Wang J, Constabel CP (2004) Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta 220:87–96

    Article  CAS  PubMed  Google Scholar 

  • Yoruk R, Marshall MR (2003) Physicochemical properties and function of plant polyphenol oxidase: a review. J Food Biochem 27:361–422

    Article  CAS  Google Scholar 

  • Zawistowski J, Biliaderis CG, Eskin NAM (1991) Polyphenol oxidase. In: Robinson DS, Eskin NAM (eds) Oxidative enzymes in foods. Elsevier Science Publishing, New York, pp 217–273

    Google Scholar 

  • Zekiri F, Molitor C, Mauracher SG, Michael C, Mayer RL, Gerner C, Rompel A (2014) Purification and characterization of tyrosinase from walnut leaves (Juglans regia). Phytochemistry 101:5–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Jukanti, A. (2017). Function(s)/Role(s) of Polyphenol Oxidases. In: Polyphenol Oxidases (PPOs) in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-5747-2_5

Download citation

Publish with us

Policies and ethics