Skip to main content
Log in

Gene expression profiling of systemically wound-induced defenses in hybrid poplar

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

As part of an ongoing effort to identify genes involved in poplar defense responses, and to provide a resource for comparative analysis of woody and non-woody plant defense, we generated expressed sequence tags (ESTs) from a library constructed from systemically wounded leaves of hybrid poplar (Populus trichocarpa × P. deltoides). Partial sequences were obtained from the 5′ ends of 928 individual cDNAs, which could be grouped into 565 non-overlapping sequences. Of these, 447 sequences were singletons, while the remainder fell into 118 clusters containing up to 17 partially overlapping ESTs. Approximately 81% of the EST sequences showed similarity to previously described sequences in public databases. Of these, the distribution of gene functions within the EST set indicated that approximately 11% of the ESTs encode proteins potentially involved in defense or secondary metabolism, while photosynthesis and primary metabolism accounted for 45% of the expressed genes. Two types of defense proteins, Kunitz trypsin inhibitors and chitinases, were found among the ten most abundant ESTs, indicating the significant impact of wounding on the leaf transcriptome and suggesting that these functions are important for hybrid poplar defense. In the course of this work, three new wound-inducible Kunitz trypsin inhibitor-like genes and two new chitinase-like genes were characterized. A suite of other systemically wound-induced genes were identified using northern and macroarray analysis, indicating diversity and multiplicity in the induced defense response. Overall, we demonstrate that defense-related genes of hybrid poplar have a variety of functions, and show remarkably diverse expression patterns upon wounding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EST :

Expressed sequence tag

PPO :

Polyphenol oxidase

TI :

Trypsin inhibitor

References

  • Allona I, Quinn M, Shoop E, Swope K, Cyr SS, Carlis J, Riedl J, Retzel E, Campbell MM, Sederoff R, Whetten RW (1998) Analysis of xylem formation in pine by cDNA sequencing. Proc Natl Acad Sci USA 95:9693–9698

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden Tl, Schaffer AA, Zhang, J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  Google Scholar 

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    CAS  PubMed  Google Scholar 

  • Barbehenn RV (2001) Roles of peritrophic membranes in protecting herbivorous insects from ingested plant allelochemicals. Arch Insect Physiol Biochem 47:86–99

    Article  CAS  Google Scholar 

  • Bate NJ, Rothstein SJ (1998) C-6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 16:561–569

    Article  CAS  PubMed  Google Scholar 

  • Bergey DR, Howe GA, Ryan CA (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci USA 93:12053–12058

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw HD Jr, Hollick JB, Parsons TJ, Clarke HRG, Gordon MP (1989) Systemically wound-responsive genes in poplar trees encode proteins similar to sweet potato sporamins and legume Kunitz trypsin inhibitors. Plant Mol Biol 14:51–59

    Google Scholar 

  • Brenner ED, Lambert KN, Kaloshian I, Williamson VM (1998) Characterization of LeMir, a root-knot nematode-induced gene in tomato with an encoded product secreted from the root. Plant Physiol 118:237–247

    Article  CAS  PubMed  Google Scholar 

  • Broadway RM (1996) Dietary proteinase inhibitors alter complement of midgut proteases. Arch Insect Biochem Physiol 32:39–53

    Article  CAS  Google Scholar 

  • Broadway RM, Gongora C, Kain WC, Sanderson JP, Monroy JA, Bennett KC, Warner JB, Hoffmann MP (1998) Novel chitinolytic enzymes with biological activity against herbivorous insects. J Chem Ecol 24:985–998

    Article  CAS  Google Scholar 

  • Cavalcanti MSM, Oliva ML, Fritz H, Jochum M, Mentele R, Sampaio M, Coelho LCBB, Batista IFC, Sampaio CAM (2002) Characterization of a Kunitz trypsin inhibitor with one disulfide bridge purified from Swartzia pickellii. Biochem Biophys Res Commun 291:635–639

    Article  CAS  PubMed  Google Scholar 

  • Cheong YH, Chang H-S, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    CAS  PubMed  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    CAS  PubMed  Google Scholar 

  • Clarke RGH, Lawrence SD, Flaskerud J, Korhnak TE, Gordon MP, Davis JM (1998) Chitinase accumulates systemically in wounded poplar trees. Physiol Plant 103:154–161

    Article  CAS  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    Article  CAS  PubMed  Google Scholar 

  • Constabel CP (1999) A survey of herbivore-inducible defensive proteins and phytochemicals. In: Agrawal AA, Tuzun S, Bent E (eds) Induced plant defenses against herbivores and pathogens. APS Press, St. Paul, pp 137–166

  • Constabel CP, Bergey D, Ryan CA (1995) Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci USA 92:407–411

    CAS  PubMed  Google Scholar 

  • Constabel CP, Yip L, Patton JJ, Christopher ME (2000) Polyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiol 124:285–295

    Article  CAS  PubMed  Google Scholar 

  • Davis JM, Clarke HRG, Bradshaw HD Jr, Gordon MP (1991) Populus chitinase genes: structure, organization and similarity of translated sequences to herbaceous plant chitinases. Plant Mol Biol 17:631–639

    CAS  PubMed  Google Scholar 

  • Davis JM, Egelkrout EE, Coleman GD, Chen THH, Haissig BE, Riemenschneider DE, Gordon MP (1993) A family of wound-induced genes in Populus shares common features with genes encoding vegetative storage proteins. Plant Mol Biol 23:135–143

    CAS  PubMed  Google Scholar 

  • Ding X, Gopalakrishnan B, Johnson LB, White FF, Wang X, Morgan TD, Kramer KJ, Muthukrishnan S (1998) Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgen Res 7:77–84

    Article  CAS  Google Scholar 

  • Dowd PF, Lagrimini LM (1997) Examination of different tobacco (Nicotiana spp.) types under- and overproducing tobacco anionic peroxidase for their leaf resistance to Helicoverpa zea. J Chem Ecol 23:2357–2370

    Article  CAS  Google Scholar 

  • Duffey SS, Felton GW (1991) Enzymatic antinutritive defenses of the tomato plant against insects. In: Hedin P (ed) Naturally occurring pest bioregulators. ACS Press, Washington, D.C., pp 167–197

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    CAS  PubMed  Google Scholar 

  • Feldmann K (2001) Cytochromes P450 as genes for crop improvement. Curr Opin Plant Biol 4:162–167

    Article  CAS  PubMed  Google Scholar 

  • Felton GW, Donato KK, Broadway RM, Duffey SS (1992) Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore, Spodoptera exigua. J Insect Physiol 38:277–285

    Article  CAS  Google Scholar 

  • Franco OL, de Sa MFG, Sales MP, Mello LV, Oliveira AS, Rigden DJ (2002) Overlapping binding sites for trypsin and papain on a Kunitz-type proteinase inhibitor from Prosopis juliflora. Proteins 49:335–341

    Article  CAS  PubMed  Google Scholar 

  • Fristensky B, Balcerzak M, He D, Zhang P (1999) Expressed sequence tags from the defense response of Brassica napus to Leptosphaeria maculans. Mol Plant Pathol On-line [http://www.bspp.org.uk/mppol/1999/0301Fristensky]

  • Gang DR, Kasahara H, Xia Z-Q, Vander Mijnsbrugge K, Bauw G, Boerjan W, Van Montagu M, Davin LB, Lewis NG (1999) Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. J Biol Chem 274:7516–7527

    Article  Google Scholar 

  • Gang DR, Wang J, Dudareva N, Nam KH, Simon JE, Lewinsohn E, Pichersky E (2001) An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol 125:539–555

    Article  CAS  PubMed  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–777

    CAS  Google Scholar 

  • Guterman I, Shalit M, Menda N, Piestun D, Dafny-Yelin M, Shalev G, Bar E, Davydov O, Ovadis M, Emanuel M, Wang J, Adam Z, Pichersky E, Lewinsohn E, Zamir K, Vainstain A, Weiss D (2002) Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14:2325–2338

    Article  CAS  PubMed  Google Scholar 

  • Györyey J, Vaubert D, Jimenez-Zurdo JI, Charon C, Troussard L, Kondorosi A, Kondorosi E (2000) Analysis of Medicago trunculata nodule expressed sequence tags. Mol Plant Microbe Interact 13:62–71

    PubMed  Google Scholar 

  • Haruta M, Major IT, Christopher ME, Patton JJ, Constabel CP (2001) A Kunitz trypsin inhibitor gene family from trembling aspen (Populus tremuloides Michx.): cloning, functional expression, and induction by wounding and herbivory. Plant Mol Biol 46:347–359

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka A (1993) The biogeneration of green odor by green leaves. Phytochemistry 34:1201–1218

    Article  CAS  Google Scholar 

  • Heibges A, Glaczinski H, Ballvora A, Salamini F, Genhardt C (2003a) Structural diversity and organization of three gene families for Kunitz-type enzyme inhibitors from potato tubers (Solanum tuberosum L.) Mol Gen Genomics 269:526–534

    Google Scholar 

  • Heibges A, Salamini F, Genhardt C (2003b) Functional comparison of homologous members of three groups of Kunitz-type enzyme inhibitors from potato tubers (Solanum tuberosum L.) Mol Gen Genomics 269:535–541

    Google Scholar 

  • Hermsmeier D, Schittko U, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth and defense-related plant mRNAs. Plant Physiol 125:683–700

    Article  CAS  PubMed  Google Scholar 

  • Jongsma M, Bakker P, Peters J, Bosch D, Stiekema W (1995) Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc Natl Acad Sci USA 92:8041–8045

    CAS  PubMed  Google Scholar 

  • Kirst M, Johnson AF, Baucom C, Ulrich E, Hubbard K, Staggs R, Paule C, Retzel E, Whetten R, Sederoff R (2003) Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana. Proc Natl Acad Sci USA 100:7383–738

    Article  PubMed  Google Scholar 

  • Lange BM, Wildung MR, Stauber EJ, Sanchez C, Puchnik D, Croteau R (2000) Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Natl Acad Sci USA 97:2934–2939

    Article  CAS  PubMed  Google Scholar 

  • Larson PR, Isebrands JG (1971) The plastochron index as applied to developmental studies of cottonwood. Can J For Res 1:1–11

    Google Scholar 

  • Lindroth RL, Hwang S-Y (1996) Diversity, redundancy, and multiplicity in chemical defense systems of aspen. In: Romeo JT, Saunders JA, Barbosa P (eds) Phytochemical diversity and redundancy in ecological interactions. Plenum, New York, pp 25–56

  • Mahalingam R, Gomez-Buitrago A, Eckardt N, Shah N, Guevara-Garcia A, Day P, Raina R, Fedoroff NV (2003) Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biol 4:R20.1–20.14

    Article  PubMed  Google Scholar 

  • Mekhedov S, Martinez de Ilarduya O, Ohlrogge J (2000) Toward a functional catalog of the plant genome. A survey of genes for lipid biosynthesis. Plant Physiol 122:389–401

    Article  CAS  PubMed  Google Scholar 

  • Miranda M, Christopher ME, Constabel CP (2004) The variable nature of herbivore defense: evidence for a rapidly diverging Kunitz trypsin inhibitor gene in Populus. In: Cronk Q, Whitton J, Taylor IEP (eds) Plant adaptation: molecular biology and ecology. NRC Press, Ottawa (in press)

  • Neuhaus J-M (1999) Plant chitinases (PR-3, PR-4, PR-8, PR-11). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, Fla., pp 77–105

  • Ohlrogge J, Benning C (2000) Unraveling plant metabolism by EST analysis. Curr Opin Plant Biol 3:224–228

    Article  CAS  PubMed  Google Scholar 

  • Palo RT (1984) Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores. J Chem Ecol 10:499–520

    CAS  Google Scholar 

  • Parsons TJ, Bradshaw HD Jr, Gordon MP (1989) Systemic accumulation of specific mRNAs in response to wounding in poplar trees. Proc Natl Acad Sci USA 86:7895–7899

    CAS  PubMed  Google Scholar 

  • Pechan T, Cohen A, Williams WP, Luthe DS (2002) Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc Natl Acad Sci USA 99:13319–13323

    Article  CAS  PubMed  Google Scholar 

  • Poulsen C, Pødenphant L (2002) Expressed sequence tags from roots and nodule primordia of Lotus japonicus infected with Mesorhizobium loti. Mol Plant Microbe Interact 15:376–379

    CAS  PubMed  Google Scholar 

  • Qutob D, Hraber PT, Sobral BWS, Gijzen M (2000) Comparative analysis of expressed sequences in Phytophthora sojae. Plant Physiol 123:243–253

    Article  CAS  PubMed  Google Scholar 

  • Ralston L, Kwon ST, Schoenbeck M, Ralston J, Schenk DJ, Coates RM, Chappell J (2001) Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (Nicotiana tabacum). Arch Biochem Biophys 393:222–235

    Article  CAS  PubMed  Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–719

    Article  CAS  PubMed  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: The European molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  • Richardson M (1991) Seed storage proteins: the enzyme inhibitors. Methods Plant Biochem 5:259–305

    CAS  Google Scholar 

  • Richmond T, Sommerville S (2000) Chasing the dream: plant EST microarrays. Curr Opin Plant Biol 3:108–116

    Article  CAS  PubMed  Google Scholar 

  • Royo J, León J, Vancanneyt G, Albar JP, Rosahl S, Ortego F, Castanera P, Sánchez-Serrano JJ (1999) Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increases weight gain of insect pests. Proc Natl Acad Sci USA 96:1146–1151

    Article  CAS  PubMed  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–449

    Article  CAS  Google Scholar 

  • Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477:112–121

    Article  CAS  PubMed  Google Scholar 

  • Schittko U, Hermsmeier D, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata: II. Accumulation of plant mRNAs in response to insect-derived cues. Plant Physiol 125:701–710

    Article  CAS  PubMed  Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. Trends Biotechnol 16:168–175

    Article  CAS  Google Scholar 

  • Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri TT, Boerjan W, Gustafsson P, Uhlen M, Sundberg B, Lundeberg J (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc Natl Acad Sci USA 95:13330–13335

    Article  CAS  PubMed  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Wang J, Constabel CP (2004) Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta, in press

  • Yao J, Coussens PM, Saama P, Suchyta S, Ernst CW (2002) Generation of expressed sequence tags from a normalized porcine skeletal muscle cDNA library. Anim Biotechnol 13:211–222

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank John Davis and Janice Cooke for advice with the macroarray analysis and for helpful discussions. This work was supported by the Alberta Agricultural Research Institute and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Peter Constabel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christopher, M.E., Miranda, M., Major, I.T. et al. Gene expression profiling of systemically wound-induced defenses in hybrid poplar. Planta 219, 936–947 (2004). https://doi.org/10.1007/s00425-004-1297-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1297-3

Keywords

Navigation