Skip to main content

Abstract

Legumes and cereal crops complement each other nutritionally. Almost all cereal grains are deficient in one or more of the essential amino acids, which are found more abundantly in legumes, and vice versa for other amino acids. In addition, edible legumes have the capacity of fixing atmospheric nitrogen in a symbiotic association with bacteria of the Rhizobium genus, allowing the plant to produce higher levels of protein. In fact, seeds from legume crops are a major source of dietary proteins and calories in food and feed products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, I.O., Choi, K.T. and Kim, B.D. (1991) Relationship between somatic embryogenesis and anthocyanin synthesis in callus culture of Panax ginseng, Kor. J. Plant. Tiss. Cult 18, 227–232.

    Google Scholar 

  • Ahn, I.O. and Kim, B.D. (1992) Transition of cellular oxidation-reduction status in accordance with somatic embryogenesis during the cultures of ginseng (Panax ginseng), J. Kor. Soc. Hort. Sci 33, 231–235.

    Google Scholar 

  • Ahn, I.O., Bui, V.L., Gendy, C. and Tran Thanh Van, K. (1996) Direct embryogenesis through the thin cell layer culture system in Panax ginseng, Plant Cell Tiss. Org. Cult 45, 237–243.

    Article  CAS  Google Scholar 

  • Ammirato, P.V. (1983) Embryogenesis. In: Evans, D.A., Sharp, W.R., Ammirato, P.V. and Yamada, Y. (Eds.) Handbook of Plant Cell Culture, Vol. 1, MacMillan Inc., New York, pp. 82–123.

    Google Scholar 

  • Aragão, F.J.L., Barros, L.M.G., Brasileiro, A.C.M., Ribeiro, S.G., Smith, F.D., Sanford, J.C., Faria, J.C. and Rech, E.L. (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment, Theor. Appl. Genet 93, 142–450.

    Article  Google Scholar 

  • Aragão, F.J.L. and Reels, E.L. (1997) Morphological factors influencing recovery of transgenic bean plants (Phaseolus vulgaris L.) of a Carioca cultivar, Intl. J. Plant Sci 158, 157–163.

    Article  Google Scholar 

  • Arya, I.D. and Chandra, N. (1991) An attempt for clonal propagation through somatic embryogenesis in immature embryos of Sunnhemp (Crotalaria juncea L.), Phytomorphology 40, 159–162.

    Google Scholar 

  • Arya, S., Liu, J.R. and Eriksson, T. (1991) Plant regeneration from protoplasts of Panax ginseng (C. A. Meyer) through somatic embryogenesis, Plant Cell Rep 10, 277–281.

    Article  Google Scholar 

  • Arya, S., Arya, I.D. and Eriksson, T. (1993a) Rapid multiplication of adventitious somatic embryos of Panax ginseng, Plant Cell Tiss. Org. Cult 34, 157–162.

    Article  CAS  Google Scholar 

  • Arya, I.D., Chakravarty, T.N. and Sopors, S.K. (1993b) Development of secondary inflorescences and in vitro plantlets from inflorescence cultures ofAmaranthus paniculatus, Plant Cell Rep 12, 286–288.

    Article  Google Scholar 

  • Atanassov, A.I. (1980) Method for continuous bud formation in tissue cultures of sugar beet (Beta vulgaris L.), Z. Pflanzenzidcht. 84, 23–29.

    Google Scholar 

  • Bagga, S., Venkateswarlu, K. and Sopory, S.K. (1987) In vitro regeneration of plants from hypocotyl segments of Amaranthus paniculatus, Plant Cell Rep 16, 183–184.

    Article  Google Scholar 

  • Ball, E. (1946) Development in sterile culture of stem tips and subjacent regions of Tropaeolum majus L. and of Lupinus albus L., Amer. J. Bot 33, 301–318.

    Article  Google Scholar 

  • Bandyopadhyay, S., Cane, K., Rasmussen, G. and Hamill, J.D. (1999) Efficient plant regeneration from seedling ex-plants of two commercially important temperate eucalypt species — Eucalyptus nitens and E. globulus, Plant Sci 140, 189–198.

    Article  CAS  Google Scholar 

  • Bermici, A., Schiff, S. and Bovelli, R. (1992) In vitro culture of species and varieties of four Amaranthus L. species, Euphytica 62, 181–186.

    Article  Google Scholar 

  • Benici, A., Grifoni, T., Schiff, S. and Bovelli, R. (1997) Studies on callus growth and morphogenesis in several species and lines of Amaranthus, Plant Cell Tiss. Org. Cult 49 29–33.

    Article  Google Scholar 

  • Beyer, E.M. (1976) A potent inhibitor of ethylene action in plants, Physiol. Plant 58, 268–271.

    Article  CAS  Google Scholar 

  • Bhansali, R.R., Driver, J.A. and Durzan, D.J. (1990) Rapid multiplication of adventitiouc somatic embryos in peach and nectarine by secondary embryogenesis, Plant Cell Rep 9, 280–284.

    Article  CAS  Google Scholar 

  • Bigot, C. (1976) Bourgeonnement in vitro a partir d’epiderme séparé de feuille de Br - yophyllum daigremontianum (Crassulecées), Can. J. Bot 54, 852–867.

    Article  CAS  Google Scholar 

  • Bilkey, P.C. and Cocking, E.C. (1981) Increased plant vigor by in vitro propagation of Saintpaulia ionantlia Wendl. from subepidermal tissue, Hort Science 16, 643–644.

    Google Scholar 

  • Borkid, C. Choi, J.H. and Sung, Z.R. (1986) Effect of 2,4-dichlorophenoxyacetic acid on the expression of embryogenic program in carrot, Plant Physiol 81, 1143–1146.

    Google Scholar 

  • Brar, M.S., Moore, M.J., Al-Khayri, J.M., More-lock, T.E. and Anderson, E.J. (1999) Ethylene inhibitors promote in vitro regeneration of cowpea (Vigna unguiculata L.), In Vitro Cell. Dev. Biol.-Plant 35, 222–225.

    Article  CAS  Google Scholar 

  • Bui, V.L., Do My, N.T., Gendy, C., Vidal, J. and Tran Thanh Van, K. (1997) Somatic embryogenesis and plant regeneration on thin cell layer of a C4 species Digitaria sanguinalis (L.). Scop, Plant Cell Tiss. Org. Cult 49, 201–208.

    Article  Google Scholar 

  • Bui, V.L., Do My, N.T., Jeanneau, M., Sadik, S., Tu, S., Vidal, J. and Tran Thanh Van, K. (1998a) Rapid plant regeneration on a C4 dicot species: Amaranthus edulis, Plant Sci 132, 145–154.

    Google Scholar 

  • Bui, V.L., Jeanneau, M., Do My, N.Y., Vidal, J. and Tran Thanh Van, K. (1998b) Rapid regeneration of whole plants in large crabgrass (Digitaria sanguinalis L.) using thin cell layer culture, Plant Cell Rep 18, 166–172.

    Article  Google Scholar 

  • Bui, V.L., Tu, S., Jeanneau, M., Do My, N.T., Vidal, J. and Tran Thanh Van, K. (1998e) Transformation of a C4 monocot: Digitaria sanguinalis (Large crabgrass) using Thin Cell Layer, In: Altman, A., Izhar, S. and Ziv, M. (Eds.), Plant Biotechnology and in vitro Biology in the 21st Century. Proceedings of the IX International Congress on Plant Tissue and Cell Culture.

    Google Scholar 

  • Bui, V.L., Hang Phuong, N.T., Anh Hong, L.T. and Tran Thanh Van, K. (1999a) High frequency shoot regeneration from Rhynchostylis gigantea (Orchidaceae) using Thin Cell Layer, Plant Growth Reg 28, 179–185.

    Article  Google Scholar 

  • Bui, V.L., Nhut, D.T. and Tran Thanh Van, K. (1999b) Plant production via shoot regeneration from thin cell layer pseudo-bulblet explants of Liliutn longiflorum in vitro, C. R. Acad. Sci. Paris 322, 303–310.

    Article  Google Scholar 

  • Bui, V.L., Cruz de Carvalho, M.H., Zuily-Fodil, Y., Pham Thi, A.T. and Tran Thanh Van, K. (2002) Plant regeneration from the cotyledonary nodes of Vigna unguiculata (L.) Walp: Influence of shoot tip removal and thin cell layer explants, Plant Cell Tiss. Org. Cult, 53, 906–911.

    Google Scholar 

  • Butenko, R.G., Brushwitzkyii, R.V. and Slepyan, L.I. (1968) Organogenesis and somatic embryogenesis in the tissue culture of Panax ginseng C.A. Meyer, Baton. Zh 53, 906–911

    Google Scholar 

  • Capelle, S.C., Mok, D.W.S. and Turner, J.E. (1983) Effects of thidiazuron on cytokinin autonomy and the metabolism of N6-(A2-isopentenyl) [8–14Cladenosine in callus cultures of Phaseolus lunatus L, Plant Physiol 73, 796–802.

    Article  PubMed  CAS  Google Scholar 

  • Chang, W.C. and Hsing, Y.I. (1980) Plant regeneration through somatic embryogenesis in root-derived callus of ginseng (Panax ginseng C.A. Meyer), Theor. Appl. Genet 57, 133–135.

    Article  Google Scholar 

  • Chlyah, H. (1974) Inter-tissue correlations in organ fragments, Plant Physiol 54, 341–348.

    Article  PubMed  CAS  Google Scholar 

  • Chlyah, A. and Tran Thanh Van, M. (1975) Differential reactivity in epidermal cells of Begonia rex excised and grown in vitro, Plant Physiol 35, 16–20.

    Article  Google Scholar 

  • Choi, K.T. (1988) Panax ginseng C.A. Meyer Micropropagation and the in vitro production of saponins. In: Bajaj, Y.P.S. (Ed) Biotechnology in Agriculture and Forestry. Vol 4, Springer-Verlag, Berlin, pp. 485–500.

    Google Scholar 

  • Chriqui, D., David, C., Adam, S. (1988) Effect of the differentiated or dedifferentiated stale of tobacco pith tissue on its behaviour after inoculation with Agrobacterium rhizogenes. Plant Cell Rep 7, 111–114.

    Article  Google Scholar 

  • Coimbra, S. and Salema, R. (1994) Amaranthus hypochondriacus seed structure and localization of seed reserves, Ann. Bot 74, 373–379.

    Article  Google Scholar 

  • Coumans-Gilles, M.F., Kevers, C., Coumans, M., Ceulemans, E. and Grspar, T. (1981) Vegetative multiplication of sugar beet through in vitro culture of inflorescence pieces, Plant Cell Tiss. Org. Cult 1, 93–101.

    Article  CAS  Google Scholar 

  • Cruz de Carvalho, M.H., Laffray, D. and Louguet, P. (1998) Comparison of the physiological responses of Phaseolus and Vigna cultivars when submitted to drought conditions, Env. Exp. Bot 40, 197–207.

    Article  Google Scholar 

  • Cruz de Carvalho, M.H., Bui, V.L., Zuily-Fodil, Y., Pham Thi, A.T. and Tran Thanh Van, K. (2000) Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin cell layer culture and silver nitrate, Plant Sci 159, 223–232.

    Article  Google Scholar 

  • Daza, A. and Chamber, M.A. (1993) Plant regeneration from hypocotyl segments of Lupinus luteus L. cv. Aurea, Plant Cell Tiss. Org. Cult 34, 303–305.

    Article  CAS  Google Scholar 

  • De Greef, W. and Jacobs, M. W. (1979) In vitro culture of the sugarbeet: description of a cell line with high regeneration capacity, Plant Sci. Lett 17, 55–61.

    Article  Google Scholar 

  • Debergh, P.C. (1983) Effects of agar brand and concentration on the tissue culture medium, Physiol Plant 59, 210–276.

    Article  Google Scholar 

  • Detrez, C., Tetu, T., Sangwan, R.S. and Sangwan-Norreel, B.S. (1988) Direct organogenesis from petiole and thin cell layer explant in sugar beet cultured in vitro, J. Exp. Bot 39, 917–926.

    Article  CAS  Google Scholar 

  • Dever, L.V., Blackwell, R.D., Fullwood, N.J., Lacuesta, M., Leegood. R.C., Glick, L.A., Pearson, M. and Lea, P. J. (1995) The isolation and characterization of mutants of the C4 photosynthetic pathway, J. Exp. Bot 46, 1363–1376.

    Google Scholar 

  • Dietert, M.F., Barron, S.A. and Yoder, O.C. (1982) Effects of genotype on in vitro culture in the genus Brassica, Plant Sci. Lett 26, 233–240.

    Article  Google Scholar 

  • Dillen, W., De Clercq, J., Goossens, A., Van Montagu, M. and Angenon, G. (1997) Agrobacterium-mediated transformation of Phaseolus acutifolius A. Gray, Theor. Appl. Genet, 94, 151–158.

    Article  CAS  Google Scholar 

  • Dunwell, J.M. (1981) In vitro regeneration from excised leaf discs of three Brassica species, J. Exp. Bot 32, 789–799.

    Article  Google Scholar 

  • Esau, K. (1977) Anatomy of Seed Plants. J. Wiley, 2rd edn. New York.

    Google Scholar 

  • Fellman, C.C., Read, P.E. and Hosier, M.A. (1987) Effects of thidiazuron and CPPU on meristem formation and shoot proliferation, HortScience 22, 1197–1200.

    CAS  Google Scholar 

  • Flores, H.E., Their, A. and Galston, A.W. (1981) Tissue culture of Amaranthus, Env. Exp. Bot 21, 437–438.

    Google Scholar 

  • Flores, H.E., Their, A. and Galston, A.W. (1982) In vitro culture of grain and vegetable amaranths (Amaranthus spp), Amer. J. Bot 69, 1049–1054.

    Article  Google Scholar 

  • Flores, H.E. and Teutonico, R.A. (1986) Amaranths (Amaranthus spp.): Potential grain and vegetable crops, In: Bajaj, Y.P.S. (Ed), Biotechnology in Agriculture and Forestry. Vol 2: Crops 1, Springer Verlag, Heidelberg. Berlin. Germany, pp. 568–578.

    Google Scholar 

  • Franklin, C.I., Trieu, T.N., Gonzales, R.A. and Dixon, R.A. (1991) Plant regeneration from seedling explants of green bean (Phaseolus vulgaris L.) via organogenesis, Plant Cell Tiss. Org. Cult 24, 199–206.

    Article  Google Scholar 

  • Gamborg, O.L., Miller, R.A. and Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cells, Exp. Cell Res 50, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Gandor, D.W. and Meyer, J. (1988) A simple two-dye basic stain facilitating recognition of mitosis in plastic embedded tissue sections. In: The Williams and Wilkins Co (Eds.) Stain Technology, USA, pp. 75–81.

    Google Scholar 

  • Gendy, C., Sene, M., Bui, V.L., Vidal, J. and Tran Thanh Van, K. (1996) Somatic embryogenesis and plant regeneration in Sorghum bicolor (L.) Moench, Plant Cell Rep 15, 900–904.

    Article  CAS  Google Scholar 

  • Gill, R. and Saxena, P.K. (1992) Direct somatic embryogenesis and regeneration of plants from seedling explants of peanut (A rachis hypogaea): promotive role of thidiazuron, Can. J. Bot 70, 1186–1192.

    Article  CAS  Google Scholar 

  • Gill, R., Gerrath, R.J. and Saxena, Y.K. (1993) High frequency of direct somatic embryogenesis in thin layer cultures of hybrid seed geranium (Pelargonium x hortorum), Can. J. Bot 71, 408–413.

    Article  Google Scholar 

  • Gleddie, S., Keller, W. and Setterfield, G. (1983) Somatic embryogenesis and plant regeneration from leaf explants and cell suspension of Solanum melongena (eggplant), Can. J. Bot 61, 656–666.

    Article  CAS  Google Scholar 

  • Graham, P.H. and Ranalli, P. (1997) Common bean (Phaseolus vulgaris L.), Field Crops Res 53, 131–146.

    Article  Google Scholar 

  • Grant, I. and Harney, P.M. (1982) In vitro propagation of rutabaga root pieces, Can. J. Plant Sci 62, 189–192.

    Article  CAS  Google Scholar 

  • Guerra, M.P. and Handro, W. (1988) Somatic embryogenesis and plant regeneration in embryo cultures of Euterpe edulis Mart.(Palame), Plant Cell Rep 7, 550–552.

    Article  Google Scholar 

  • Halperin, W. and Wetherell, D.F. (1964) Adventitious embryony in tissue culture of the wild carrot (Daucus carota L.), Amer. J. Bot 51, 274–283.

    Article  CAS  Google Scholar 

  • Hanh, T.T., Lie-Schricke, H. and Tran Thanh Van, K. (1981) Direct in vitro bud formation from fragments and thin cell layers of different organs of the winged bean (Psophocarpus tetragonolobus L. DC), Z. Pftanzenphysiol 102, 127–139.

    Google Scholar 

  • Haterlein, A.J. (1983) Bean, In: Teare, I.D. and Peet, M.M. (Eds.), Crop Water Relations, Wiley, New York, pp. 157–185.

    Google Scholar 

  • Herman, R.B. (1993) Efficient micropropagation via thin cell layer cultures, Agricell Rep 20, 42–43.

    Google Scholar 

  • Hicks, G.S. (1980) Patterns of organ development in plant tissue culture and the problem of organ determination, Bot. Rev 46, 1–23.

    Article  Google Scholar 

  • Hooker, M.P. and Nabors, M.W. (1977) Callus initiation, growth and organogenesis in sugar beet (Beta vulgaris L.), Z. Pftanzenphysiol 84, 237–246.

    CAS  Google Scholar 

  • Horâk, J., Lusiiricc, J., Mésiéek, J., Kaminek, M. and Poliickovd, D. (1975) Regeneration of diploid and polyploid plants from the stem pith explants of diploid marrow stem kale (Brassica oleracea L), Ann. Hort 39, 371–377.

    Google Scholar 

  • Hosokawa, K., Nakano, M., Oikawa, Y. and Yamamura, S. (1996) Adventitious shoot regeneration from leaf, stem and root explants of commercial Gentiana, Plant Cell Rep 15, 578–581.

    Article  CAS  Google Scholar 

  • Hoyos, R.A. and Hosfield, G.L. (1995) Ethylene inhibitors added to in vitro culture media of common bean promotes morphogenesis of cotyledonary node explants, Annu. Rep. Bean Improv. Coop (BIC) 38, 99–100.

    Google Scholar 

  • Huetteman, C.A. and Preece, J.E. (1993) Thidiazuron a potent cytokinin for woody plant tissue culture, Plant Tiss. Org. Cult 33, 105–119.

    Article  CAS  Google Scholar 

  • Hussey, G. and Hepher, A. (1978) Clonal propagation of sugar beet plants and the formation of polyploids by tissue culture, Ann. Bot 42, 477–479.

    Google Scholar 

  • Jullien, F. and Wyndaele, R. (1992) Precocious in vitro flowering of soybean cotyledonary node, J. Plant Physiol 140, 251–253.

    Article  CAS  Google Scholar 

  • Kartha, K.K., Gamborg, O.L. and Constabel, F. (1974a) In vitro plant formation from stem explants of rape (Brassica napus cv Zephyr), Physiol. Plant 31, 217–220.

    Article  Google Scholar 

  • Kartha, K.K., Michayluk, M.R., Kao, K.N., Gamborg, O.L. and Constabel, F. (1974b) Callus formation and plant regeneration from mesophyll protoplasts of rape plants (Brassica napus L cv. Zephyr), Plant Sci. Lett 3, 265–271.

    Article  CAS  Google Scholar 

  • Kartha, K.K., Pahl, K., Leung, N.L. and Morginski, L.A. (1981) Plant regeneration from meristems of grain legumes: soybean, cowpea, peanut, chickpea and bean, Can. J. Bot 59, 1671–1679.

    Article  CAS  Google Scholar 

  • Keller, W.A. and Armstrong, K.C. (1978) High frequency production of microspore derived plants from Brassica napus anther cultures, Z. Pftanzenphysiol 80, 100–108.

    Google Scholar 

  • Kieffer, M., Fuller, M.P. and Jellings, A.J. (1995) Rapid mass production of cauliflower propagules from fractionated and graded curd, Plant Sci 107, 229–235.

    Article  CAS  Google Scholar 

  • Kim, J.W. and Minamikawa, T. (1996) Transformation and regeneration of French bean plants by the particle bombardment process, Plant Sci 117, 131–138.

    Article  CAS  Google Scholar 

  • Klimaszewska, K. and Keller, W.A. (1985) High frequency plant regeneration from thin cell layer explants of Brassica napus, Plant Cell Tiss. Org. Cult 4, 193–197.

    Article  Google Scholar 

  • Kohlenbach, H.W, Wenzel, G. and Hoffmann, F. (1982) Regeneration of Brassica napus plantlets in cultures from isolated protoplasts of haploid stem embryos as compared with leaf protoplasts, Z Pflanzenphysiol 105, 131–142.

    Google Scholar 

  • Lakshmanan, P., Loh, C.-S. and Goh, C.-J. (1995) An in vitro method for rapid regeneration of a monopodial orchid hybrid Aranda Deborah using thin section culture, Plant Cell Rep 14, 510–514.

    Article  CAS  Google Scholar 

  • Larkin, P.J. and Scowcroft, W.R. (1981) Somaclonal variation — a novel source of variability from cell cultures for plant improvement, Theor. Appl. Genet 60, 197–214.

    Article  Google Scholar 

  • Lazzeri, P.A. and Dunwell, J.M. (1984) In vitro shoot regeneration from seedlings: root segments of Brassica oleracea and Brassica napus cultivars, Ann. Bot 54, 341–350.

    CAS  Google Scholar 

  • Lee, I-I.S., Liu, J.R., Yang, S.G. and Lee, Y.H. (1990) In vitro floweringof plantlets regenerated from zygotic embryo derived somaticembryos of ginseng, HortScience 25, 1652–1659.

    Google Scholar 

  • Li, L.C. and Kohlenbach, H.W. (1982) Somatic embryogenesis in quite a direct way in cultures of mesophyll protoplasts of Brassica napus (L.), Plant Cell Rep 1, 209–211.

    Article  Google Scholar 

  • Lichter, R. (1982) Induction of haploid plants from isolated pollen of Brassica napus, Z. Pflanzenphysiol 105, 427–434.

    Google Scholar 

  • Loh, C.S. and Ingram, D.S. (1982) Production of haploid plants from anther cultures and secondary embryoids of winter oilseed rape, Brassica napus ssp. Oleifera, New Phytol 91, 507–516.

    Article  Google Scholar 

  • Lu, C.Y. (1993) The use of thidiazuron in tissue culture, In Vitro CellDev. Biol-Plant 29, 92–96.

    Google Scholar 

  • Malik, K.A. and Saxena, P.K. (1991) Regeneration in Phaseolus vulgaris L.: Promotive role of N6-benzylaminopurine in cultures from juvenile leaves, Planta 184, 148–150.

    Article  CAS  Google Scholar 

  • Malik, K.A. and Saxena, P.K. (1992a) Regeneration in Phaseolus vulgaris L.: High-frequency induction of direct shoot formation in intact seedlings by N6-benzylaminopurine and thidiazuron, Planta 186, 384–389.

    Article  CAS  Google Scholar 

  • Malik, K.A. and Saxena, P.K. (1992b) Thidiazuron induces high-frequency shoot regeneration in intact seedlings of pea (Pisum sativum), chickpea (Citer arietinum) and lentil (Lens culinaris), Austr. J. PlantPhysiol 19, 731–740.

    Article  CAS  Google Scholar 

  • Margara, J. (1977) La multiplication végétative de la Betterave (Beta vulgaris L.) en culture in vitro, C.R. Acad. Sci. Paris 285, 1041–1044.

    CAS  Google Scholar 

  • Margara, J. and Leydecker, M.T. (1978) Different types d’organogenese observés chez le colza, Brassica napus L var. oleifera Metzg. Applications à la multiplication végétative in vitro, C.R. Acad. Sci. Paris 287, 17–20.

    CAS  Google Scholar 

  • Mariotti, D., Fontana, G.S. and Santini, L. (1989) Genetic transformation of grain legumes: Phaseolus vulgaris L. and P. coccineus L, J. Genet. Breed 43, 77–82.

    Google Scholar 

  • Martins,I.S. and Sondahl, M.R. (1984) Multiple shoot formation from shoot apex cultures of Phaseolus vulgaris L, J. Plant Physiol 115, 205–208.

    Article  PubMed  CAS  Google Scholar 

  • McClean, P. and Grafton, K.F. (1989) Regeneration of dry bean (Phaseolus vulgaris L.) via organogenesis, Plant Sci 60, 117–122.

    Article  Google Scholar 

  • McClean, P., Chee, P., Simental, J., Drong, R.F. and Slighton, J. (1991) Susceptibility of dry bean (Phaseolus vulgaris L.) to Agrobacterium infection: Transformation of cotyledonary hypocotyl tissues, Plant Cell Tiss. Org. Cult 24, 131–138.

    Article  Google Scholar 

  • McCown, B.H., Zeldin, E.L., Pinkala, H.A. and Dedolph, R.R. (1988) Nodule culture: a developmental pathway with high potential for regeneration, automated micropropagation and plant metabolite production from woody plants. In: Hanover, J.W. and Keathley, D.E. (Eds.) Genetic Manipulation of Woody Plants, New York: Plenum, pp. 149–166.

    Chapter  Google Scholar 

  • Menge, U. (1989) Studies on the regeneration of lupins. In: XII Eucarpia Congress, Vorträge für Pflanzenzüchtg 15 (25): p 12.

    Google Scholar 

  • Miedema, P., Groot, P.J. and Zuidgeest, J.H.M. (1980) Vegetative propagation of Beta vulgaris by leaf cuttings, Ibid 29, 425–432.

    Google Scholar 

  • Miedema, P. (1982a) Vegetative propagation of Beta vulgaris by leaf cuttings with axillary buds, Euphytica 31, 771–772.

    Article  Google Scholar 

  • Miedema, P. (1982b) A tissue culture technique for vegetative propagation and low temperature preservation of Beta vulgaris, Ibid 31, 635–643.

    Google Scholar 

  • Mohamed, P.M., Read, P.E. and Coyne, D.P. (1992) Dark preconditioning, CCPU, and thidiazuron promote shoot organogenesis on seedling node explants of common and faba bean, J. Am. Soc. Hort. Sci 117, 668–672.

    CAS  Google Scholar 

  • Mok, M.C., Mok, D.W.S. and Armstrong, D.J. (1980) Cytokinin activity of N-phenyl-N-1,2,3-thidiazol-5-ylurea and its effect on cylokinin autonomy in callus cultures of Phaseolus, Plant Physiol 65 (suppl) 24.

    Google Scholar 

  • Mol:, M.C., Mok, D.W.S., Armstrong, D.J., Shudo, K., Isogai, Y. and Okamoto, T. (1982) Cytokinin activity of N-phenyl-N-1,2,3-thiadiazol-5-ylurea (Thidiazuron), Phytochemistry 21, 1509–1511.

    Google Scholar 

  • Mok, M.C., Mok, D.W.S. and Turner, J.E. (1987) Biological and biochemical effects of cytokinin-active phenylurea derivatives in tissue culture systems, HortScience 22, 1194–1197.

    CAS  Google Scholar 

  • Mulin, M. and Tran Thanh Van, K. (1994) Plant propagation from thin cell layers of Petunia hybrida and two important crop plants, In: II Congresso Ibérico de Biotecnologia (abstract of poster) Portugal, pp. 28.

    Google Scholar 

  • Mulin, M. and Pedroso, M.C. (1995) In vitro response of thin cell layers of Anacardium occidentale L.: a histological approach. In: IV Congresso Luso-Espanhol de Fisiologia Vegetal (abstract of poster) Portugal, pp. 221.

    Google Scholar 

  • Mulin, M. (1996) Efeito da idade fisiolbgica da planta-mâe na resposta da cultura in vitro de Anacardium occidental L. In: Agricultura e Agro-Industria Tropicais. Estudos, Empreendimentos e Cooperaçâo Volume 1, Produçâo Vegetal. Lisbon, Portugal.

    Google Scholar 

  • Mulin, M. and Bellio-Spataru, A. (1996) A comparative study of thin cell layer response of Lupinus mutabilis and Lupinus albus. In: First meeting of the Portuguese Chapter of IAPTC, Plant Tissue Cult. Biotech 2 (3), 162.

    Google Scholar 

  • Mulin, M. and Bellio-Spataru, A. (2000) Organogenesis from hypocotyls thin cell layer of Lupinus mutabilis and Lupinus albus, Plant Growth Reg 30, 177–183.

    Article  CAS  Google Scholar 

  • Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture, Physiol. Plant 15, 473–479.

    Article  CAS  Google Scholar 

  • Nadolska-Orczyk, A. (1992) Somatic embryogenesis of agriculturally important lupin species (Lupinus angustifolius, L. albus, L. mutabilis), Plant Cell Tiss. Org. Cult 28, 19–25.

    Article  CAS  Google Scholar 

  • Nhut, D.T. (1998) Micropropagation of lily (Lilium longiflorum) via in vitro stem node and pseudo-bulblet culture, Plant Cell Rep 117, 913–916.

    Article  Google Scholar 

  • Nhut, D.T., Bui, V.L., Fukai, S., Tanaka, M. and Tran Thanh Van. K. (2000a) Direct somatic embryogenesis through pseudo-bulblet thin cell layer of Lilium longiflorum. Abstract of 2000 World Congress on In Vitro Biology, San Diego, California, p. 46. A.

    Google Scholar 

  • Nhut, D.T., Bui, V.L. and Tran Thanh Van, K. (2000b) Somatic embryogenesis and direct shoot regeneration of rice (Oryza sativa L.) using thin cell layer culture of apical meristematic tissue, J. PlantPhysiol 157, 559–565.

    CAS  Google Scholar 

  • Nhut, D.T., Bui, V.L., Tanaka, M. and Tran Thanh Van. K. (200la) Shoot induction and plant regeneration from receptacle tissue of Lilium longiflorum, Sci. Hort 87, 131–138.

    Google Scholar 

  • Nhut, D. T., Bui, V. L., Fukai, S., Tanaka, M. and Tran Thanh Van. K. (2001b) Effects of activated charcoal, explant size, explant position and sucrose concentration on plant and shoot regeneration of Lilium longiflorum via young stem culture, Plant Growth Reg 33, 59–65.

    Google Scholar 

  • Nhut, D.T., Bui, V.L. and Tran Thanh Van. K. (2001e) Manipulation of the morphogenetic pathways of Lilium longiflorum transverse thin cell layer explants by auxin and cytokinin, In Vitro Cell Bio. Dev 37, 44–49.

    Google Scholar 

  • Nhut, D.T., Bui, V.L., da Silva, J.A.T. and Aswath, C.R. (2001d) Thin cell layer culture system in Lilium: Regeneration and Transformation Perspective, In Vitro Cell Bio. Dev (In press).

    Google Scholar 

  • Nhut, D. T., Bui V. L., Minh, N. T., da Silva, J. A. T., Fukai, S., Tanaka, M. and Tran Thanh Van. K. (2002a) Somatic embryogenesis through pseudo-bulblet thin cell layer of Lilium longiflorum, Plant Grow. Reg (In press).

    Google Scholar 

  • Nhut, D.T., Huong, N.T.D., Bui V.L., da Silva, J.A.T., Fukai, S. and Tanaka, M. (2002b) The changes in shoot regeneration potential of protocorm-like bodies derived from Lilium longiflorum young stem explants exposed to medium volume, pH, light intensity and sucrose concentration pretreatment, J. Hort. Sci. Biotech (In press).

    Google Scholar 

  • Nhut, D.T. (2002e) Effect of explant age on direct somatic embryogenesis by culturing young stem thin cell layers of Lilium longiflorum (Submitted paper).

    Google Scholar 

  • Nhut, D.T., da Silva, J.A.T. and Bui, V.L. (2002d) The in vitro control of direct main stem formation derived from receptacle culture of Lilium longiflorum and micropropagation by using in vitro stem nodes (Sununitted paper).

    Google Scholar 

  • Okole, B.N. and Schulz, F.A. (1996) Micro-cross sections of banana and plantains (Musa spp.): morphogenesis and regeneration of callus and shoot buds, Plant Sci 116, 185–195.

    Article  CAS  Google Scholar 

  • Pelletier, G., Primard, C., Vedel, F., Chetrit, P., Remy, R., Rouselle, P. and Renard, M. (1983) Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion, A. Jol. Gen. Genet 191, 244–250.

    Article  CAS  Google Scholar 

  • Pelissier, B., Bouchefra, O., Pépin, O. and Freyssinet, G. (1990) Production of isolated somatic embryos from sunflower thin cell layers, Plant Cell Rep 9, 47–50.

    Article  Google Scholar 

  • Pua, E.G. and Chi, G.L. (1993) De novo shoot morphogenesis and plant growth of mustard (Brassica juncea) in vitro in relation to ethylene, Physiol. Plant 88, 467–474.

    Article  CAS  Google Scholar 

  • Rogozinska, J. and Goska, M. (1978) Induction of differentiation and plant formation in isolated sugar beet leaves. Bull. Acad. Pol. Sci Cl II. Vol. 5, 343–345.

    Google Scholar 

  • Rogozinska, J.H., Drozdowska, L. (1980) Organogenesis and plant formation trom cotyledon and callus culture of rape, Acta Soc. Bot. Pol 48, 5–20.

    Google Scholar 

  • Russell, D.R., Wallace, K.M., Bathe, J.H., Martinell, B.J. and McCabe, D.E. (1993) Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration, Plant Cell Rep 12, 165–169.

    Article  CAS  Google Scholar 

  • Sacristan, M.D. (1981) Regeneration of plants from long term callus cultures of haploid Brassica napus, Z. Pflanzenz. 86, 248–253.

    Google Scholar 

  • Sator, C. (1985) Studies on shoot regeneration of lupins (Lupinus spp.), Plant Cell Rep 4, 126–128.

    Article  Google Scholar 

  • Saunders, J.W. (1982) A flexible in vitro shoot culture propagation system for sugar beet that includes rapid floral induction of ramets, Crop Sci 22, 1102–1105.

    Article  Google Scholar 

  • Saunders, J.W. and Mahoney, M.D. (1982) Benzyladenine induces foliar adventitious shoot formation on young plants of two sugar beet (Beta vulgaris L.) cultivars, Euphytica 31, 801–804.

    Article  Google Scholar 

  • Saunders, J.W. and Daub, M.E. (1984) Shoot regeneration from hormone-autonomous callus from shoot cultures of several sugar beet (Beta vulgaris L.) genotypes, Plant Sci. Lett 34, 219–223.

    Article  Google Scholar 

  • Saunders, J.W. and Doley, W.P. (1986) One-step shoot regeneration from callus of whole plant leaf explants of sugar beet lines and a somaclonal variant for in vitro behaviour, J. Plant Physiol 124, 473–9.

    Article  CAS  Google Scholar 

  • Saunders, J.W. and Shin, K. (1986) Germplasm and physiologic effects on induction of high-frequency hormone autonomous callus and subsequent shoot regeneration in sugar beet, Crop Sci 26, 1240–1245.

    Article  CAS  Google Scholar 

  • Saxena, P.K., Malik, K.A. and Gill, R. (1992) Induction by thidiazuron of somatic embryogenesis in intact seedlings of peanut, Planta 187, 421–424.

    Article  CAS  Google Scholar 

  • Schuerman, P.L. and Dandekar, A.M. (1993) Transformation of temperate woody crops: Progress and potentials, Sci. Hort 55, 101–124.

    Article  CAS  Google Scholar 

  • Shibata, S., Tanaka, O., Ando, T., Sado, M., Tsushima, S. and Ohsawa, T. (1966) Chemical studies on oriental plant drugs. XIV. Protopanaxadiol, a genuine sapogenins of ginseng saponins, Chem. Pharm. Bull 14, 595–600.

    Article  PubMed  CAS  Google Scholar 

  • Singh, S. and Chandra, N. (1984) Plant regeneration in callus and suspension cultures of Brassica carnpcstris cv Yellow Sarson, Plant Cell Rep 3, 1–4.

    Article  Google Scholar 

  • Spurr, A.R. (1969) A low viscosity epoxy resin embedding medium for electron microscopy, J. Ultrastructure Res 26, 31–43.

    Article  CAS  Google Scholar 

  • Sroga, G.E. (1987) Plant regeneration of two Lupinus spp. from callus cultures via organogenesis, Plant Sci 51, 245–249.

    Article  Google Scholar 

  • Stringam, G.R. (1977) Regeneration in stem explants of haploid rapeseed (Brassica napus L), Plant Sci. Lett 9, 115–119.

    Article  CAS  Google Scholar 

  • Stringam, G.R. (1979) Regeneration in leaf callus cultures of haploid rapeseed (Brassica napus L.), Z. Pflanzenphysiol 92, 459–462.

    Google Scholar 

  • Takahashi, S., Shodu, K., Okamoto, T., Yamada, T. and Y. Isogai, Y. (1978) Cytokinin activity of N-phenyl-N-(4-pyridyl)urea derivatives, Phytochemistry 17, 1201–1207.

    CAS  Google Scholar 

  • Tetu, T., Sangwan, R.S. and Sangwan-Norreel, B.S. (1987) Hormonal control of organogenesis and somatic embryogenesis in Beta vulgaris callus, J. Exp. Bot. 38, 506–517.

    Article  CAS  Google Scholar 

  • Thomas, E., Hoffmann, F., Potrykus, I. and Wenzel, G. (1976) Protoplast regeneration and stem embryogenesis of haploid androgenetic rape, Mol. Gen. Genet 145, 245–247.

    Article  Google Scholar 

  • Thomas, J.C. and Katterman, F.R. (1986) Cytokinin activity induced by thidiazuron, Plant Physiol 81, 681–683.

    Article  PubMed  CAS  Google Scholar 

  • Tisserat, B. and Galletta, D.P. (1988) In vitro flowering inAmaranthus, HortScience 23, 210–212.

    CAS  Google Scholar 

  • Tran Thanh Van, M. (1973) In vitro de novo flower, bud, root and callus differentiation from excised epidermal tissue, Nature 246, 44–45.

    Article  Google Scholar 

  • Tran Thanh Van, M., Dien, N.T. and Chlyah, A. (1974a) Regulation of organogenesis in small explants of superficial tissue of Nicoti ana tabacum L., Planta 119, 149–159.

    Article  Google Scholar 

  • Tran Thanh Van, K., Chlyah, H. and Chlyah, A. (1974b) Regulation of organogenesis in thin layers of epidermal and sub-epidermal cells, In: Tissue Culture and Plant Science. Street., H.E. (Ed.) Academic Press New York, pp. 101–139.

    Google Scholar 

  • Tran Thanh Van, K. and Trinh, N.H. (1978) Thin cell layers, Concept Methodology and Results. In: TA Thorpe (Ed) Frontiers of Plant Tissue Culture. Int. Ass. Plant Tiss. Cult, pp. 37–48.

    Google Scholar 

  • Tran Thanh Van, K. (1980a) Control of morphogenesis by inherent and exogenously applied factors in thin cell layers. In: Vasil, I. (Ed). Academic Press, Int. Rev. Cytol 11A, 175–194.

    Google Scholar 

  • Tran Thanh Van, K. (19806) Control of morphogenesis or what shapes a group of cells, In: Fiechter, A. (Ed) Advances in Biochemical Engineering. Vol. 18 Springer-Verlag, Berlin, pp. 151–171.

    Google Scholar 

  • Tran Thanh Van, K. (1981) Control of morphogenesis, Ann. Rev. Plant Physiol 32, 291–311.

    Article  Google Scholar 

  • Tran Thanh Van, K., Lie-Schricke, H., Marcotte, J.L. and Trinh, T.H. (1986) Winged bean (Psophocarpus tetragonolobus (L.) DC, In: Bajaj, Y.P.S. (Ed.), Biotechnology in Agriculture and Forestry, Vol. 2 Crop I, Springer, Berlin, pp. 556–567.

    Google Scholar 

  • Tran Thanh Van, K., Richard, L. and Gendy, C. (1990) An experimental model for the analysis of plant cell differentiation: Thin cell layer concept, strategy, methods, records and potential. In: Rodriguez, R., Tames, R.S. and Durzan, D. (Eds.) Plant Aging, Basic and Applied Approaches. Plenum Press, New York, pp. 215–224.

    Google Scholar 

  • Tran Thanh Van, K. (1991) Molecular aspects of flowering, In: Harding, J., Singh, F. and Mol, J.N.M. (Eds.). Genetics and Breeding of Omamental Plants, Plenum Press. New York, pp. 253–269.

    Google Scholar 

  • Tran Thanh Van, K. and Trinh, H.T. (1991) Organogenic differentiation, In: Bhojwani, S.S. (Ed.), Plant tissue Culture: Applications and Limitations, Developments In Crop Sciences 19, Elsevier, Amsterdam. Oxford, New York, Tokyo, pp. 34–53.

    Google Scholar 

  • Tran Thanh Van, K. and Gendy, C. (1993) Relation between some cytological, biochemical, molecular markers and plant morphogenesis. In: Roubelakis-Angelakis, K.A. and Tran Thanh Van, K. (Eds.) Morphogenesis in Plants, Molecular Approaches, Plenum Press, New York, pp. 39–54.

    Google Scholar 

  • Tran Thanh Van, K. (1996) Morphogenesis in Plant Tissues Cultures. In: Soh, W.Y. and Bhojwani, N.S. (Eds.) Kluwer Academic publishers, New York.

    Google Scholar 

  • Tran Thanh Van, K. and Bui, V.L. (2000) Current status of thin cell layer method for the induction of organogenesis or somatic embryogenesis, In: Mohan, S.J., Gupta, P.K. and Newton, R.J. (Eds.), Somatic Embryogenesis in Woody Plants. Vol. 6, Kluwer, Dordrecht, pp. 51–92.

    Google Scholar 

  • Trinh, T.H., Mante, S., Pua, E.-C. and Chua, N.-H. (1987) Rapid production of transgenic flowering shoots and Fl progeny from Nicotiana plumbaginifolia epidermal peels, Biol. Technology 5, 1081–1084.

    Article  Google Scholar 

  • Van Geyt, J.P.C. and Jacobs, M. (1985) Suspension culture of sugar beet (Beta vulgaris L.) Induction and habituation of dedifferentiated and self-regenerating cell lines. Plant Cell Rep 4, 66–69.

    Article  Google Scholar 

  • Visser, C., Qureshi, J.A., Gill, R. and Saxena, P.K. (1992) Morphoregulatory role of thidiazuron: Substitution of auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyl cultures, Plant Physiol 99, 1704–1707.

    Article  PubMed  CAS  Google Scholar 

  • Wakita, Y., Sasamoto, H., Yokota, S. and Yoshizawa, N. (1995) Callus proliferation from leaf protoplasts using phenylurea type cytokinin, 4-PU, in Betula platyphylla var Japonica, In Vitro Cell. Dev. Biol.-Plant 31, 183–186.

    Google Scholar 

  • Wang, J.-L., Klessig, D.F. and Berry, J.O. (1992) Regulation of C4 gene expression in developing amaranth leaves, Plant Cell 4, 173–184.

    PubMed  CAS  Google Scholar 

  • Wang, J.-L., Long, J.J., Hotchkiss, T. and Berry, J.O. (1993) C4 photosynthetic gene expression in light-and dark-grown amaranth cotyledon, Plant Physiol 102, 1085–1093.

    Article  PubMed  CAS  Google Scholar 

  • Williams and Collin, H.A. (1976) Embryogenesis and plantlets regeneration in tissue culture of celery, Ann. Bot 40, 325–332.

    Google Scholar 

  • Zambre, M.A., De Clercq, J., Vranovâ, E., Van Montagu, M., Angenon, G. and Dillen, W. (1998) Plant regeneration from embryo-derived callus in Phaseolus vulgaris L. (common bean) and P. acut folius A. Gray (tepary bean), Plant Cell Rep 17, 626–630.

    Article  CAS  Google Scholar 

  • Zapata, E.J. and Sink, K.C. (1981) Somatic embryogenesis from Lycopersicon peruvianum (L.) Mill, leaf mesophyll protoplasts, Theor. Appl. Genet 59, 265–268.

    Article  Google Scholar 

  • Zhou, J., Ma, H., Guo, F. and Luo, X. (1994) Effect of thidiazuron on somatic embryogenesis of Cayratia japonica, Plant Tiss. Org Cult 36, 73–79.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nhut, D.T., Teixeira da Silva, J.A., Van Le, B., Van, K.T.T. (2003). Thin Cell Layer Studies of Vegetable, Leguminous and Medicinal Plants. In: Nhut, D.T., Van Le, B., Tran Thanh Van, K., Thorpe, T. (eds) Thin Cell Layer Culture System: Regeneration and Transformation Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3522-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3522-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6259-8

  • Online ISBN: 978-94-017-3522-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics