Skip to main content

The Evolution of Light-harvesting Antennas

  • Chapter
Light-Harvesting Antennas in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 13))

Summary

Light-harvesting antennas are central players in the conversion of solar energy to chemical energy. They have been evolving since the earliest anaerobic prokaryotes developed the first primitive photosystems. In the modern antennas, we see the results of many common processes of genetic change (duplication, divergence, acquisition and losses) as well as the primary and secondary endosymbiotic events that gave rise to the chloroplasts of photosynthetic eukaryotes. This chapter first reviews the assumptions and methods used in molecular evolution studies, then discusses the evolution of the enzymes involved in the synthesis of light-harvesting chromophores (chlorophylls, bacteriochlorophylls, phycobilins and carotenoids) and the evolution of the protein families that bind them, particular the core complex family, the LHC superfamily, and the phycobiliproteins. It is clear that the evolution of the proteins and the pigments were at least partly independent: ‘molecular opportunism’ resulted in the proteins’ binding whatever pigments were available, leading to the wide variety of chlorophyll-carotenoid pigment complexes that exist today. A model involving lateral gene transfer to account for the sharing of certain antennas by widely separated divisions of photosynthetic bacteria (including cyanobacteria) is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BChl, Chi:

bacteriochlorophyll chlorophyll

CP43, CP47:

core antennas of PS II

ELIP:

early light-induced protein

EST:

expressed sequence tag a cDNA sequence

Ga:

billion years ago

Hlip:

high light-induced protein of cyanobacteria

IsiA:

Chi a protein induced by Fe limitation product of isiA gene also called CP43 ′

LHC:

member of l ightharvesting complex superfamily

Ohp:

one-helix protein of Arabidopsis, similar to Hlip

Pcb:

prochlorophyte Chi a/b protein

PsaA, PsaB:

PS I reaction center-core antenna proteins

PS I, PS II:

Photosystem I Photosystem II

Sep:

stress-induced two-helix proteins members of LHC superfamily

RC:

reaction center

Ycfl7:

plastid open reading frame encoding an Hlip homolog

References

  • Adachi J and Hasegawa M (1996a) Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol 42: 459–468

    Article  PubMed  CAS  Google Scholar 

  • Adachi J and Hasegawa M (1996b) MOLPHY: Programs for molecular phylogenetics. Version 2.2, pp 1–150.Computer Science Monographs 23, Institute of Statistical Mathematics, Tokyo

    Google Scholar 

  • Adachi J, Waddell PJ, Martin W and Hasegawa M (2000) Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA. J Mol Evol 50: 348–358

    PubMed  CAS  Google Scholar 

  • Adams KL, Daley DO, Qiu Y-L, Whelan J and Palmer JD (2000) Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408: 354–357

    Article  PubMed  CAS  Google Scholar 

  • Adamska I (1997) ELIPs-light induced stress proteins. Physiol Plant 100: 794–805

    Article  CAS  Google Scholar 

  • Adamska I, Roobol-Böza M, Lindahl M and Andersson B (1999) Isolation of pigment-binding early light-inducible proteins from pea. Eur J Biochem 260: 453–460

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäfer AA, Zhang J, Zhang Z, Miller W and Lipman DJ (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402

    Google Scholar 

  • Apt KE, Collier JL and Grossman AR (1995) Evolution of the phycobiliproteins. J Mol Biol 248: 79–96

    Article  PubMed  CAS  Google Scholar 

  • Apt KE, Metzner S and Grossman AR (2001) The subunits of phycoerythrin from a red alga: Position in phycobilisomes and sequence characterization. J Phycol 37: 64–70 Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815

    Google Scholar 

  • Barber J, Morris E and Büchel C (2000) Revealing the structure of the Photosystem II chlorophyll binding proteins, CP43 and CP47. Biochim Biophys Acta 1459: 239–247

    Article  PubMed  CAS  Google Scholar 

  • Barbrook AC, Lockhart PJ and Howe CJ (1998) Phylogenese analysis of plastid origins based on sec A sequences. Curr Genet 34: 336–341

    Article  PubMed  CAS  Google Scholar 

  • Bashford D, Chothia C and Lesk AM (1987) Determinants of a protein fold. Unique features of the globin amino acid sequences. J Mol Biol 196: 199–216

    Google Scholar 

  • Bassi R, Croce R, Cugini D and Sandoná D (1999) Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci USA 96: 10056–10061

    Article  PubMed  CAS  Google Scholar 

  • Bathke L, Rhiel E, Krumbein WE and Marquardt J (1999) Biochemical and immunochemical investigations on the light-harvesting system of the cryptophyte Rhodomonas sp: Evidence for a Photosystem I specific antenna. Plant Biology 1: 516–523

    Google Scholar 

  • Bauer CE, Bollivar DW and Suzuki JY (1993) Genetic analyses of photopigment biosynthesis in eubacteria: A guiding light for algae and plants. J Bacteriol 175: 3919–3925

    Google Scholar 

  • Bauldauf SL, Roger AJ, Wenk-Siefert I and Doolittle, WF (2000) A kingdom level phylogeny of eukaryotes based on combined protein data. Science 290: 972–977

    Article  Google Scholar 

  • Baymann F, Brugna M, Mühlenhoff U and Nitschke W (2001) Daddy, where did (PS)I come from? Biochim Biophys Acta 1507: 291–310

    Article  PubMed  CAS  Google Scholar 

  • Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60: 43–73

    Article  CAS  Google Scholar 

  • Bengtson S (ed) (1994) Early Life on Earth. 84th Nobel Symposium. Columbia University Press

    Google Scholar 

  • Bibby TS, Nield J and Barber J (2001a) A Photosystem Il-like protein, induced under iron-stress, forms an antenna ring around the Photosystem I trimer in cyanobacteria. Nature 412: 743–745

    Article  PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J, Partensky F and Barber J (2001b) Antenna ring around Photosystem I. Nature 413: 590

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33: 91–111

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (1994) Protein structure, electron transfer and evolution of prokaryotic photosynthetic reaction centers. Antonie Van Leeuwenhoek 65: 311–329

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (2001) Molecular evidence for the evolution of photosynthesis. Trends Plant Sci 6: 4–6

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE and Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23: 94–97

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE, Olson JM and Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria pp 399–435, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B and Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1462

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel K-P, Pistorius EK and Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745–748

    Article  PubMed  CAS  Google Scholar 

  • Boichenko VA, Klimov VV, Miyashita H and Miyachi S (2000) Functional characteristics of chlorophyll ¿/-predominating photosynthetic apparatus in intact cells of Acaryochloris marina. Photosynth Res 65: 269–277

    Article  PubMed  CAS  Google Scholar 

  • Boore JL and Brown WM (1998) Big trees from little genomes: Mitochondrial gene order as a phylogenetic tool. Curr Opinion Genet Devel 8: 668–674

    Article  CAS  Google Scholar 

  • Boucher Y and Doolittle FW (2000) The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Molecular Microbiol 37: 703–716

    Article  CAS  Google Scholar 

  • Bouvier F, D’Harlingue A, Backhaus RA, Kumagai MH and Camara B (2000) Identification of neoxanthin synthase as a carotenoid cyclase paralog. Eur J Biochem 267: 6346–6352

    Article  PubMed  CAS  Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP, Kleppe AK, van Kranendonk MJ, Lindsay JF, Steele A and Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416: 76–81

    Article  PubMed  Google Scholar 

  • Brocks JJ, Logan GA, Buick R and Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285: 1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Brown JR and Doolittle WF (1997) Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev 61: 456–502

    PubMed  CAS  Google Scholar 

  • Bryant DA (1992) Puzzles of chloroplast ancestry. Curr Biol 2: 240–242.

    Article  PubMed  CAS  Google Scholar 

  • Burke DH, Alberti M and Hearst JE (1993a) The Rhodobacter capsulatus chlorin reductase-encoding locus, bchA, consists of three genes, bchX, bchY, and bchZ. J Bacteriol 175: 2407–2413

    PubMed  CAS  Google Scholar 

  • Burke DH, Hearst JE and Sidow A (1993b) Early evolution of photosynthesis—clues from nitrogenase and chlorophyll iron proteins. Proc Nat Acad Sci USA. 90: 7134–7138

    Article  PubMed  CAS  Google Scholar 

  • Burnap RL, Troyan T and Sherman LA (1993) The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp. PCC7942 (CP43’) is encoded by the isiA gene. Plant Physiol 103: 893–902

    Article  PubMed  CAS  Google Scholar 

  • Butterfield NJ (2000) Bangiomorpha pubescens N. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26: 386–404

    Google Scholar 

  • Butterfield NJ and Rainbird RH (1998) Diverse organic-walled fossils, including possible dinoflagellates, from the Early Neoproterozoic of arctic Canada. Geology 26: 963–966

    Article  Google Scholar 

  • Butterfield NJ, Knoll AH and Swett K (1990) A bangiophyte red alga from the Proterozoic of Arctic Canada. Science 250: 107–204

    Article  Google Scholar 

  • Canfield DE and Raiswell R (1999) The evolution of the sulfur cycle. Am J Sci 299: 697–723

    Article  CAS  Google Scholar 

  • Cao Y, Adachi J, Janke A, Paabo S and Hasegawa M (1994) Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: Instability of a tree based on a single gene. J Mol Evol 39: 519–527

    Google Scholar 

  • Caron L, Douady D, Quinet-Szely M, de Goer S and Berkaloff C (1996) Gene structure of a chlorophyll a/c-binding protein from a brown alga: Presence of an intron and phylogenetic implications. J Mol Evol 43: 270–280

    Google Scholar 

  • Castenholz RW and Pierson BK (1995) Ecology of thermophilic anoxygenic phototrophs. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 87–103.

    Google Scholar 

  • Kluwer Academic Publishers, Dordrecht Castenholz RW, Bauld J and Pierson BK (1992) Photosynthetic Activity in Modern Microbial Mat-Building communities. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, a Multidisciplinary Study, pp 279–285.

    Google Scholar 

  • Cambridge University Press, Cambridge Castresana J and Moreira D (1999) Respiratory chains in the last common ancestor of living organisms. J Mol Evol 49: 453–460

    Article  Google Scholar 

  • Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5: 174–182

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2002) Chloroplast evolution: Secondary symbiogenesis and multiple losses. Curr Biol 12: R62 - R64

    Article  PubMed  CAS  Google Scholar 

  • Chang S (1994) The planetary setting of prebiotic evolution. In Bengtson S (ed) Early Life on Earth. Nobel Symposium No. 84, pp 11–23.

    Google Scholar 

  • Columbia University Press, New York Chang SW and Donoghue MJ (2000) Recreating ancestral proteins. Trends Ecol Evol 15: 109–114

    Article  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB and Welschmeyer NA (1988) A novel free-living prochloro-phyte abundant in the oceanic euphotic zone. Nature 334: 340–343

    Article  Google Scholar 

  • Cunningham FX and Gantt E (2001) One ring or two? Determination of ring number in carotenoids by lycopene e-cyclases. Proc Natl Acad Sci USA 98: 2905–2910

    Article  PubMed  CAS  Google Scholar 

  • Davis CM, Parkes-Loach PS, Cook CK, Meadows KA, Bandilla M, Scheer H and Loach PA (1996) Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodobacter sphaeroides using reconstitution methodology with bacteriochlorophyll analogs. Biochemistry 35: 3072–3084

    Article  PubMed  CAS  Google Scholar 

  • Davis CM, Bustamente PL, Todd JB, Parkes-Loach PS, McGlynn P, Olsen JD, McMaster L, Hunter CN and Loach PA (1997) Evaluation of structure-function relationships in the core light-harvesting complex of photosynthetic bacteria by reconstitution with mutant polypeptides. Biochemistry 36: 3671–3679

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff MO, Schwartz RM and Orcutt BC (1978) A model of evolutionary change in proteins. In Dayhoff MO (ed) Atlas of Protein Sequence and Structure, Vol 5, Supplement 3, pp 345–352. National Biomedical Research Foundation, Washington, D.C.

    Google Scholar 

  • Deane JA, Fraunholz M, Su V, Maier U-G, Martin W, Durnford DG and McFadden GI (2000) Evidence for nucleomorph to host nucleus gene transfer: Light-harvesting complex proteins from cryptomonads and chlorarachniophytes. Protist 151: 239–252

    Google Scholar 

  • Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ and Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392: 353–358

    Article  PubMed  CAS  Google Scholar 

  • Delwiche CF, Palmer JD (1997) The origin of plastids and their spread via secondary endosymbiosis. PI Syst Evol [Suppl.] 11: 53–86

    Article  CAS  Google Scholar 

  • Dismukes GC, Klimov VV, Baranov SV, Koslov YN, DasGupta J and Tyryshkin A (2001) The origin of atmospheric oxygen on Earth: The innovation of oxygenic photosynthesis. Proc Natl Acad Sci USA 98: 2170–2175

    Google Scholar 

  • DolganovNAM, Bhaya D, Grossman AR (1994) Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. Proc Natl Acad Sci USA 92: 636–640

    Google Scholar 

  • Doolittle RF (1995) Of Archae and Eo: What’s in a name? Proc

    Google Scholar 

  • Natl Acad Sci USA 92: 2421–2423

    Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284: 2124–2128.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF (2000) The nature of the universal ancestor and the evolution of the proteome. Curr Opinion Struct Biol 10: 355–358

    Article  CAS  Google Scholar 

  • Douglas SE and Penny SL (1999) The plastid genome of the cryptophyte alga Guillardia theta: Complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48: 236–244

    Article  PubMed  CAS  Google Scholar 

  • Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu X, Reith M, Cavalier-Smith R and Maier U-G (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410: 1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Ducret A, Sidler W, Frank G and Zuber H (1994) The complete amino acid sequence of R-phycocyanin-I a and (5 subunits from the red alga Porphyridium cruentum. Structural and phylogenetic relationships of the phycocyanins within the phycobiliprotein families. Eur J Biochem 221: 563–580

    Google Scholar 

  • Durnford DG, Aebersold R, Green BR (1996) The fiicoxanthin-chlorophyll proteins from a chromophyte alga are part of a large multigene family: Structural and evolutionary relationships to other light harvesting antennae. Mol Gen Genet 253: 377–386

    Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E and Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications forplastid evolution. J Mol Evol 48: 59–68

    Article  PubMed  CAS  Google Scholar 

  • Eisen JA (2000) Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr Opinion Genet Devel 10: 606–611

    Article  CAS  Google Scholar 

  • Eisen JA and 35 others (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci 99: 9509–9514

    Article  PubMed  CAS  Google Scholar 

  • Eppard M and Rhiel E (1998) The genes encoding light-harvesting subunits of Cyclotella cryptica (Bacillariophyceae) constitute a complex and heterogeneous family. Mol Gen Genet 260: 335–345

    Article  PubMed  CAS  Google Scholar 

  • Eppard M, Krumbein WE, von Haeseler A and Rhiel E (2000) Characterization of fcp4 and fcpl2, two additional genes encoding light harvesting proteins of Cyclotella cryptica ( Bacillariophyceae) and phylogenetic analysis of this complex gene family. Plant Biol 2: 283–289

    Google Scholar 

  • Fast NM, Kissinger JC, Roos DS and Keeling PJ (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 18: 418–426.

    Article  PubMed  CAS  Google Scholar 

  • Fiedor L, Leupold D, Teuchner K, Voigt B, Hunter CM, Scherz A and Scheer H (2001) Excitation trap approach to analyze size and pigment-pigment coupling: reconstitution of LH1 antenna of Rhodobacter sphaeroides with Ni-substituted bacteriochlorophyll. Biochemistry 40: 3737–3747

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791

    Article  Google Scholar 

  • Felsenstein J (1988) Phylogenies from molecular sequences: Inference and reliability. Annu Rev Genet 22: 521–565

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2002) Phylip. (http://evolution.genetics.washington.edu/phylip.html)

  • Ferreira F and Straus N A (1994) Iron deprivation in cyanobacteria. J Appl Phycol 6: 199–210

    Article  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan Y and Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531–1545

    PubMed  CAS  Google Scholar 

  • Foster PG and Hickey DA (1999) Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J Mol Evol 48: 284–290

    Article  PubMed  CAS  Google Scholar 

  • Frankenberg N, Mukougawa K, Kohchi T and Lagarias JC (2001) Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13: 965–978

    PubMed  CAS  Google Scholar 

  • Fromme P, Will HT, Schubert WD, Klukas O and Saenger W (1996) Structure of Photosystem I at 4.5-angstrom resolution-a short review including evolutionary aspects. Biochim Biophys Acta 1275: 76–83

    Article  Google Scholar 

  • Fromme P, Jordan P and Krauss N (2001) Structure of Photosystem I. Biochim Biophys Acta 1507: 5–31

    Article  PubMed  CAS  Google Scholar 

  • Funk C and Vermaas W (1999) A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry 38: 9397–9404

    Article  PubMed  CAS  Google Scholar 

  • Gantt E, Cunningham FX, Grabowski B and Tan S (1998) Relatedness of caroteno-chlorophyll antenna complexes in algae and plants. In Garab G (ed.) Photosynthesis: Mechanisms and Effects, Vol I, pp 239–247.

    Google Scholar 

  • Kluwer Academic, Dordrecht Garczarek L, Hess WR, Holtzendorff J, van der Staay GWM and Partensky F (2000) Multiplication of antenna genes as a major adaptation to low light in a marine prokaryote. Proc Natl Acad Sci USA 97: 4098–4101

    Article  Google Scholar 

  • Garczarek L, van der Staay GWM, Hess WR, Le Gall F and Partensky F (2001) Expression and phylogeny of the multiple antenna genes of the low-light adapted strain Prochlorococcus marinus SSI20 ( Oxyphotobacteria ). Plant Mol Biol 46: 683–693

    Google Scholar 

  • Geiss U, Vinnemeier J, Schoor A and Hagemann M (2001) The iron-regulated isiA gene of Fischerella muscicola strain PCC 73103 is linked to a likewise regulated gene encoding a Pcb-like chlorophyll-binding protein. FEMS Microbiol Lett 197: 123–129

    Article  PubMed  CAS  Google Scholar 

  • Giuffra E, Zucchelli G, Sandona D, Croce R, Cugini D, Garlaschi FM, Bassi R and Jennings RC (1997) Analysis of some optical properties of a native and reconstituted Photosystem II antenna complex, CP29-pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine spectral forms. Biochemistry 36: 12984–12993

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN (1976) Phycocyanins: Structure and function. Photochem Photobiol Rev 1: 71–115

    Article  CAS  Google Scholar 

  • Glazer AN and Wedemayer GJ (1995) Cryptomonad biliproteinsan evolutionary perspective. Photosynth Res 46: 93–105

    Article  CAS  Google Scholar 

  • Gogarten JP, Kibak H, Dittrich H, Taiz L, Bowman EJ, Manolson EJ, Poole RJ, Date T, Oshima T, Konishi J, Denda K and Yoshida M (1989) Evolution of vacuolar H+-ATPase: Implications for the origin of eukarya. Proc Natl Acad Sci USA 86: 6661–6665

    Google Scholar 

  • Golbeck JH (1993) Shared thematic elements in photochemical reaction centers. Proc Natl Acad Sci USA 90: 1642–1646

    Article  PubMed  CAS  Google Scholar 

  • Golding GB and Dean AM (1998) The structural basis of molecular adaptation. Mol Biol Evol 15: 355–369

    Article  PubMed  CAS  Google Scholar 

  • Golding GB and Gupta RS (1995) Protein-based phylogenies support a chimeric origin for the eukaryotic genome. Mol Biol Evol 12: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Grabowski B, Cunningham FX Jr and Gantt E (2001) Chlorophyll and carotenoid binding in a simple red algal light-harvesting complex crosses phylogenetic lines. Proc Natl Acad Sci USA 98: 2911–2916

    Article  PubMed  CAS  Google Scholar 

  • Graur D and Li W-H (2000) Gene duplication, exon shuffling and concerted evolution. In: Fundamentals of Molecular Evolution, pp 249–322.

    Google Scholar 

  • Sinauer Associates, Inc., Sunderland Green BR (2001) Was ‘molecular opportunism’ a factor in the evolution of different photosynthetic light-harvesting pigment systems? Proc Natl Acad Sci USA 98: 2119–2121

    Google Scholar 

  • Green BR and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47: 685–714

    Article  PubMed  CAS  Google Scholar 

  • Green BR and Gantt E (2000) Is photosynthesis really derived from purple bacteria? J Phycol 36: 983–985

    Article  Google Scholar 

  • Green BR and Kuhlbrandt W (1995) Sequence conservation of light-harvesting and stress-response proteins in relation to the three-dimensional molecular structure of LHCII. Photosynth Res 44: 139–148

    Article  CAS  Google Scholar 

  • Green BR and Pichersky E (1994) Hypothesis for the evolution of three-helix Chi a/b and Chi a/c light-harvesting antenna proteins from two-helix and four-helix ancestors. Photosynth Res 39: 149–162

    Article  CAS  Google Scholar 

  • Green BR, Pichersky E and Kloppstech K (1991) The chlorophyll «/¿-binding light-harvesting antennas of green plants: The story of an extended gene family. Trends Biochem Sci 16: 181–186

    Google Scholar 

  • Gupta RS (1998) Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archae-bacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62: 1435–1491

    PubMed  CAS  Google Scholar 

  • Gupta RS and Golding GB (1996) The origin of the eukaryotic cell. Trends Biochem Sci 21: 166–171

    PubMed  CAS  Google Scholar 

  • Gupta RS, Mukhtar T and Singh B (1999) Evolutionary relationships among photosynthetic prokaryotes (Helio-bacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): Implications regarding the origin of photosynthesis. Mol Microbiol 32: 893–906

    Google Scholar 

  • Hall BG (2001) Phylogenetic Trees Made Easy: A How-To Manual for Molecular Biologists. Sinauer Associates, Sunderland

    Google Scholar 

  • Han T-M and Runnegar B (1992) Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee iron-formation, Michigan. Science 257: 232–235

    Article  PubMed  CAS  Google Scholar 

  • Hansmann S and Martin W (2000) Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: Influence of excluding poorly alignable sites from analysis. Int J Syst Evol Microbiol 50: 1655–1663

    Article  PubMed  CAS  Google Scholar 

  • Hayes JM (2000) Lipids as a common interest of microorganisms and geochemists. Proc Natl Acad Sci USA 97: 14033–14034

    Article  PubMed  CAS  Google Scholar 

  • He Q, Dolganov N, Bjorkman O and Grossman AR (2001) The high light-inducible polypeptides in Synechocystis PCC6803. Expression and function in high light. J Biol Chem 276: 306–314

    Google Scholar 

  • Helfrich M, Ross A, King GC, Turner AG and Larkum AWD (1999) Identification of [8-vinyl]-protochlorophyllide a in phototrophic prokaryotes and algae: Chemical and spectroscopic properties. Biochim Biophys Acta 1410: 262–272

    Google Scholar 

  • Heddad M and Adamska I (2000) Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene family. Proc Nat Acad Sci USA 97: 3741–3746

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S and Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89: 10915–10919

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S and Henikoff JG (1993) Performance evaluation of amino acid substitution matrices. Proteins 17: 49–61

    Article  PubMed  CAS  Google Scholar 

  • Hess WR, Partensky F, van der Staay GWM, Garcia-Fernandez JM, Borner T and Vaulot D (1996) Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proc Natl Acad Sci USA 93: 11126–11130

    Article  PubMed  CAS  Google Scholar 

  • Hess WR, Steglich C, Lichtle C and Partensky F (1999) The phycoerythrins of Prochlorococcus marinus are associated to the thylakoid membrane and are encoded by a single large gene cluster. Plant Mol Biol 40: 507–521

    Article  PubMed  CAS  Google Scholar 

  • Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J and Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus: Insights through comparative genomics. Photosynth Res 70: 53–71

    Google Scholar 

  • Higgins DG, Thompson JD and Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Methods in Enzymology 266: 383–402

    Article  PubMed  CAS  Google Scholar 

  • Hiller RG, Crossley LG, Wrench PM, Santucci N and Hofmann E (2001) The 15-kDa forms of the apo-peridinin-chlorophyll a protein (PCP) in dinoflagellates show high identity with the apo-32 kDa PCP forms, and have similar N-terminal leaders and gene arrangements. Mol Gen Genet 266: 254–259

    Article  CAS  Google Scholar 

  • Hillis DM and Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence on phylogenetic analysis. Syst Biol 42: 182–192

    Google Scholar 

  • Hillis DM, Moritz C and Mable BK (eds) (1996) Molecular Systematics. Sinauer Associates, Sunderland

    Google Scholar 

  • Hofmann E, Wrench PM, Sharpies FP, Hiller RG, Welte W and Diederichs K (1996) Structural basis of light harvesting by carotenoids: Peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788–1791

    Article  PubMed  CAS  Google Scholar 

  • Holland HD (1994) Early Proterozoic atmospheric change. In Bengtson S (ed) Early Life on Earth. Nobel Symposium No. 84, pp 237–244.

    Google Scholar 

  • Columbia Univ. Press, New York Holm L and Sander C (1993) Structural alignment of globins, phycocyanins and colicin-A. FEBS Lett 315: 301–306

    Article  Google Scholar 

  • Hu Q, Marquardt J, Iwasaki I, Miyashita H, Kurano N, Mörschel E and Miyachi S (1999) Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic procaryote Acaryochloris marina. Biochim Biophys Acta 1412: 250–261

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz P, Goebel BM and Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bact 180: 4765–4774

    PubMed  CAS  Google Scholar 

  • Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K and Nagashima KVP (2001) Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol 52: 333–341

    PubMed  CAS  Google Scholar 

  • Ishida A and Green BR (2002) Second-hand and third-hand chloroplasts in dinoflagellates: Phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc Natl Acad Sci USA 99: 9294–9299

    Article  PubMed  CAS  Google Scholar 

  • Ivanov AG, Park Y-I, Miskiewicz E, Raven JA, Huner NPA and Öquist G (2000) Iron stress restricts photosynthetic intersystem electron transport in Synechococcus sp. PCC 7942. FEBS Lett 485: 173–177

    Article  PubMed  CAS  Google Scholar 

  • Iwabe N, Kuma K-I, Hasegawa M, Osawa S and Miyata T (1989) Evolutionary relationship of archaebacteria, eukbacteria, and eukarya inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86: 9355–9359

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Rivera MC and Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 96: 3801–3806

    Article  PubMed  CAS  Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta 1184: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4: 236–240

    Article  PubMed  Google Scholar 

  • Jansson S, Andersson J, Kim SJ and Jackowski G (2000) An Arabidopsis thaliana protein homologous to cyanobacterial high-light-inducible proteins. Plant Mol Biol 42: 345–351

    Article  PubMed  CAS  Google Scholar 

  • Javaux EJ, Knoll AH and Walter MR (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412: 66–69

    Article  PubMed  CAS  Google Scholar 

  • Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24: 8–11

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR and Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Computer Appl Biosci 8: 275–282.

    CAS  Google Scholar 

  • Jordan P, Fromme P, Will HT, Klukas O, Saenger W and Krauss (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5A resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Suriura M, Sasamoto S et al. (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109–136 Kasting JF (1993) Earth’s early atmosphere. Science 259: 920–926

    Google Scholar 

  • Kasting JF and Seifert JL (2002) Life and the evolution of Earth’s atmosphere. Science 296: 1066–1067

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF, Holland HD and Kump LR (1992) Atmospheric Evolution: the Rise of Oxygen. In Schopf JW and Klein C (eds) The Proterozoic Biosphere, a multidisciplinary study, pp 159–163. Cambridge University Press, Cambridge Katz LA (1998) Changing perspectives on the origin of eukaryotes. Trends Ecol Evol 13: 493–497

    Google Scholar 

  • Keeling PJ, Luker MA and Palmer JD (2000) Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. Mol Biol Evol 17: 23–31

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Sandusky P, Bowlby NR, Aebersold R, Green BR, Vlahakis S, Yocum CF and Pichersky E (1992) Characterization of a spinach psbS cDNA encoding the 22 kDa protein of Photosystem II. FEBS Lett 314: 67–71

    Article  PubMed  CAS  Google Scholar 

  • Kleima FJ, Hobe S, Calkoen F, Urbanus ML, Peterman EJG, van Grondelle R, Paulsen H and van Amerongen H (1999) Decreasing the chlorophyll a/b ratio in reconstituted LHCII: Structural and functional consequences. Biochemistry 38: 6587–6596

    Google Scholar 

  • Knoll AH (1992) The early evolution of eukaryotes: A geological perspective. Science 256: 622–627

    Article  PubMed  CAS  Google Scholar 

  • Knoll AH (1994) Proterozoic and early Cambrian protists: Evidence for accelerating evolutionary tempo. Proc Natl Acad Sci USA 91: 6743–6750

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Oh-oka H, Akutsu S, Akiyama M, Tominaga K, Kise H, Nishida F, Watanabe T, Amesz J, Koizumi M, Ishida N and Kano H (2000) The primary electron acceptor of green sulfur bacteria, bacteriochlorophyll 663, is chlorophyll a esterified with 2,6-phytadienol. Photosynth Res 63: 269–280

    Article  PubMed  CAS  Google Scholar 

  • Kollman JM and Doolittle RF (2000) Determining the relative rates of change for prokaryotic and eukaryotic proteins with anciently duplicated paralogs. J Mol Evol 51: 173–181

    PubMed  CAS  Google Scholar 

  • Koonin EV, Makarova KS and Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55: 709–42

    Article  PubMed  CAS  Google Scholar 

  • Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Lange BM, Rujan R, Martin W and Croteau R (2000) Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA 97: 13172–13177

    Google Scholar 

  • LaRoche J, Henry D, Wyman K, Sukenik A, Falkowski P (1994) Cloning and nucleotide sequence of a cDNA encoding a major fucoxanthin-, chlorophyll ¿z/ocontaining protein from the chrysophyte Isochrysis galbana: Implications for evolution of the cab gene family. Plant Mol Biol 25: 355–368

    Article  PubMed  CAS  Google Scholar 

  • LaRoche J, van der Staay GWM, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM Larkum A WD and Green BR (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci US 93: 15244–14248

    Article  CAS  Google Scholar 

  • Lawrence JG (1999) Selfish operons: The evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr Opinion Genet Devel 9: 642–648

    Article  CAS  Google Scholar 

  • Lawrence JG and Ochman H (2002) Reconciling the many faces of lateral gene transfer. Trends Microbiol 10: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Li W-H (1997) Molecular Evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S and Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403: 391–395

    Article  PubMed  CAS  Google Scholar 

  • Li YF, Zhou WL, Blankenship RE and Allen JP (1997) Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum. J Mol Biol 271: 456–471

    Article  PubMed  CAS  Google Scholar 

  • Lockhart PJ, Steel MA, Hendy MD and Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11: 605–612

    PubMed  CAS  Google Scholar 

  • Lockhart PJ, Larkum A WD, Steel MA, Wadell, PJ and Penny D (1996) Evolution of chlorophyll and bacteriochlorophyll: The problem of invariant sites in sequence analysis. Proc Nat Acad Sci USA. 93: 1930–1934

    Google Scholar 

  • Lopez-Garcia P and Moreira D (1999) Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci 24: 88–93

    Article  PubMed  CAS  Google Scholar 

  • Ludwig M and Gibbs SP (1989) Localization of phycoerythrin at the lumenal surface of the thylakoid membrane in Rhodomonas lens. J Cell Biol 108: 875–884

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W and Schleifer KH (1994) Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol Rev 15: 155–173

    Article  PubMed  CAS  Google Scholar 

  • Lynch M and Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154: 459–473

    PubMed  CAS  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124: 311–334

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT and Ormerod JG (1995) Taxonomy, physiology and ecology of heliobacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 17–30. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Madigan MT, Martinko JM, Parker J (1996) Brock Biology of Microorganisms (8th ed), Chapter 17. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Marquardt J, Senger H, Miyashita H, Miyachi S and Mörschel E (1997) Isolation and characterization of biliprotein aggregates from Acaryochloris marina a Prochloron-like prokaryote containing mainly chlorophyll d. FEBS Lett 410: 428–432

    Article  PubMed  CAS  Google Scholar 

  • Marquardt J, Lutz B, Wans S, Rhiel E and Krumbein WE (2001) The gene family coding for the light-harvesting polypeptides of Photosystem I of the red alga Galdieria sulphuraria. Photosynth Res 68: 121–130

    Article  PubMed  CAS  Google Scholar 

  • Martin W (1999) Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. BioEssays 21: 99–104

    Article  PubMed  CAS  Google Scholar 

  • Martin W and Herrmann RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol 118: 9–17

    Article  PubMed  CAS  Google Scholar 

  • Martin W and Miiller M (1998) The hydrogen hypothesis of the first eukaryote. Nature 392: 37–41

    Article  PubMed  CAS  Google Scholar 

  • Martin W and Schnarrenberger C (1997) The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: A case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 32: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M and Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393: 162–165

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen, Lins T, Leister D, Stoebe B, Hasegawa M and Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99: 12246–12251

    Article  PubMed  CAS  Google Scholar 

  • Matthews BW, Fenna RE, Bolognesi MC, Schmid MR and Olson JM (1979) Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J Mol Biol 131: 259–285

    Article  PubMed  CAS  Google Scholar 

  • Matthijs HCP, van der Staay GWM and Mur LR (1995) Prochlorophytes: The ‘other’ cyanobacteria? In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 49–64. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • McClure MA, Vasi TK and Fitch WM (1994) Comparative analysis of multiple protein-sequence alignment methods. Mol Biol Evol 11: 571–592

    PubMed  CAS  Google Scholar 

  • McLuskey K, Prince SM, Cogdell RJ and Isaacs NW (2001) The crystallographic structure of the B800–820 LH3 light-harvesting complex from the purple bacteria Rhodopsudomonas acidophila strain 7050. Biochemistry 40: 8783–8789

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Wilhelm C and Garab G (1996) Pigment-pigment interactions and secondary structure of reconstituted algal chlorophyll a/b-binding light-harvesting complexes of Chlorella fusca with different pigment compositions and pigment-protein stoichiometrics. Photosynth Res 49: 71–81

    Article  CAS  Google Scholar 

  • Michel H and Deisenhofer J (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of Photosystem II. Biochemistry 27: 1–7

    Article  CAS  Google Scholar 

  • Moens L, Vanfleteren J, Van de Peer Y, Peeters K, Kapp O, Czeluzniak J, Goodman M, Blaxter M and Vinogradov S (1996) Globins in nonvertebrate species: Dispersal by horizontal gene transfer and evolution of the structure-function relationships. Mol Biol Evol 13: 324–333

    Google Scholar 

  • Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP and Friend CRL (1996) Evidence for life on earth before 3,800 million years ago. Nature 384: 55–59

    Article  PubMed  CAS  Google Scholar 

  • Moldowan JM and Jacobson SR (2000) Chemical signals for early evolution ofmajortaxa. Biosignatures and taxon-specific biomarkers. Int Geol Rev 42: 805–812

    Article  Google Scholar 

  • Montane M-H and Kloppstech K (2000) The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): Was the harvesting of light their primary function? Gene 258: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Moreira D, Le Guyader H and Phillippe H (2000) the origin of red algae and the evolution of chloroplasts. Nature 405: 69–72

    Google Scholar 

  • Naylor GJP and Brown WM (1997) Structural biology and phylogenetic estimation. Nature 388: 527–528

    Article  PubMed  CAS  Google Scholar 

  • Neerken S and Amesz J (2001) The antenna reaction center complex of heliobacteria: Composition, energy conversion and electron transfer. Biochim Biophys Acta 1507: 278–290

    Article  PubMed  CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett, MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann, RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC and Fraser CM (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga marítima. Nature 399: 323–329

    Article  PubMed  CAS  Google Scholar 

  • Nield J, Orlova EV, Morris EP, Gowen B, van Heel M and Barber J (2000) 3D map of the plant Photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nature Struct Biol 7: 44–47

    Google Scholar 

  • Nikaido I, Asamizu E, Nakajima M, Nakamura Y, Saga N and Tabata S (2000) Generation of 10,154 expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis. DNA Res 7: 223–227

    Article  PubMed  Google Scholar 

  • Nikolaichik YA and Donachie WD (2000) Conservation of gene order amongst cell wall and cell division genes in Eubacteria, and ribosomal genes in Eubacteria and Eukaryotic organelles. Genetica 108: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Nisbet EG and Sleep NH (2001) The habitat and nature of early life. Nature 409: 1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Nitschke W and Rutherford AW (1991) Are all of the different types of photosynthetic reaction center variations on a common structural theme? Trends Biochem Sci 16: 241–243

    Article  PubMed  CAS  Google Scholar 

  • Nitschke W, Mühlenhoff U and Liebl U (1998) Evolution. In: Raghavendra AS (ed) Photosynthesis, a Comprehensive Treatise, pp 285–304.

    Google Scholar 

  • Cambridge University Press, Cambridge Norris BJ and Miller DJ (1994) Nucleotide sequence of a cDNA clone encoding the precursor of the peridinin-chlorophyll a-binding protein from the dinoflagellate Symbiodinium sp. Plant Mol Biol 24: 673–677

    Article  Google Scholar 

  • O’Brien PJ and Herschlag D (1999) Catalytic promiscuity and the evolution of new enzyme activities. Chem Biol 6: 91–105

    Article  Google Scholar 

  • Ochman H, Lawrence JG and Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by Gene Duplication. Springer-Verlag, Berlin

    Google Scholar 

  • Olsen GJ, Woese CR and Overbeek R (1994) The winds of evolutionary change; breathing new life into microbiology. J Bacteriol 176: 1–6

    PubMed  CAS  Google Scholar 

  • Olson JM (1970) Evolution of photosynthesis. Science 168: 438–446

    Article  PubMed  CAS  Google Scholar 

  • Olson JM (2001) ‘Evolution of Photosynthesis’ (1970), reexamined thirty years later. Photosynth Res 68: 95–112

    Google Scholar 

  • Oster U, Tanaka R, Tanaka A and Rüdiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant Journal 21: 305–310

    Article  PubMed  CAS  Google Scholar 

  • Overbeek R, Fonstein M, D’Souza M, Pusch GD and Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA 96: 2896–2901

    Article  PubMed  CAS  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276: 732–740

    Article  Google Scholar 

  • Park YI, Sandstrom S, Gustafsson P and Oquist (1999) Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp. PCC 7942 by proteicting Photosystem II from excess light under iron limitation. Molec Microbiol 32: 123–129

    Article  CAS  Google Scholar 

  • Partensky F, Hess WR and Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63: 106–127

    Google Scholar 

  • Penno S, Campbell L and Hess WR (2000) Presence of phycoerythrin in two strains of Prochlorococcus (cyano-bacteria) isolated from the subtropical north Pacific ocean. J Phycol 36: 723–729

    Article  CAS  Google Scholar 

  • Pflug HD (2001) Earliest organic evolution. Essay to the memory of Bartholomew Nagy. Precambrian Res 106: 79–91

    Article  CAS  Google Scholar 

  • Philippe H (2000) Long branch attraction and protist phylogeny. Protist 151: 307–316

    Article  PubMed  CAS  Google Scholar 

  • Philippe H and Adoutte A (1998) The molecular phylogeny of Eukaryota: Solid facts and uncertainties. In Coombs GH, Vickerman K, Sleigh MA and Warren A (eds)Evolutionary Relationships Among Protozoa, pp 25–55. Chapman and Hall, London

    Google Scholar 

  • Philippe H and Forterre P (1999) The rooting of the universal tree of life is not reliable. J Mol Evol 49: 509–523

    Article  PubMed  CAS  Google Scholar 

  • Philippe H and Laurent J (1998) How good are deep phylogenetic trees? Curr Opinion Genet Devel 8: 616–623

    Article  CAS  Google Scholar 

  • Philippe H, Germot A and Moreira D (2000) The new phylogeny of eukaryotes. Curr Opin Genet Devel 10: 596–601

    Article  CAS  Google Scholar 

  • Pierson BK (1994) The emergence, diversification and role of photosynthetic eubacteria. In Bengtson S (ed) Early Life on Earth. Nobel Symposium No. 84, pp 161–180. Columbia University Press, New York

    Google Scholar 

  • Pierson BK (2001) O phototroph, O chemotroph, where art thou? Trends Microbiol 9: 259–260

    Article  PubMed  CAS  Google Scholar 

  • Pierson BK and Olson JM (1989) Evolution of photosynthesis in anoxygenic photosynthetic prokaryotes. In: Cohen Y and Rosenberg (Eds) Microbial Mats, pp 402–427. American Society of Microbiologists, Washington, DC.

    Google Scholar 

  • Putnam-Evans C and Bricker TM (1997) Site-directed mutagenesis of the basic residues K-321 to (321)G in the CP47 protein of Photosystem II alters the chloride requirement for growth and oxygen-evolving activity in Synechocystis 6803. Plant Molecular Biology. 34: 455–463

    Article  PubMed  CAS  Google Scholar 

  • Ragan M (2002) Reconciling the many faces of lateral gene transfer. Trends Microbiol 10: 4

    Article  CAS  Google Scholar 

  • Ragan M and Charlebois RL (2002) Distributional profiles of homologous open reading frames among bacterial phyla: Implications for vertical and lateral transmission. Int J Systematic Evol Microbiol 52: 777–787

    Article  CAS  Google Scholar 

  • Raven JA, Evans MCW and Korb RE (1999) The role of trace metals in photosynthetic electron transport in 02-evolving organisms. Photosynth Res 60: 111–150

    Article  CAS  Google Scholar 

  • Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY and Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298: 1616–1620

    Article  PubMed  CAS  Google Scholar 

  • Reichmann JL, Heard J, Martin G, Reuber L, Jiang C-Z, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK and Yu G-L (2000)Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science 290: 2105–2110

    Google Scholar 

  • Richard C, Ouellet H and Guertin M (2000) Characterization of the LI818 polypeptide from the green unicellular alga Chlamydomonas reinhardtii. Plant Mol Biol 42: 303–316

    Article  PubMed  CAS  Google Scholar 

  • Riethman HC and Sherman LA (1988) Purification and characterization of an iron stress-induced chlorophyll-protein from the cyanobacterium Anacystis nidulans R2. Biochim Biophys Acta 935: 141–151

    Article  PubMed  CAS  Google Scholar 

  • Riley M and Labedan B (1997) Protein evolution viewed through Escherichia coli protein sequences: Introducing the notion of a structural segment of homology, the module. J Mol Biol 268: 857–868

    Article  PubMed  CAS  Google Scholar 

  • Rivera MC, Jain R, Moore JE and Lake JA (1998) Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci USA 95: 6239–6244

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg C, Christian J, Bricker TM and Putnam-Evans C (1999) Site-directed mutagenesis of glutamate residues in the large extrinsic loop of the Photosystem II protein CP 43 affects oxygen-evolving activity and PS II assembly. Biochemistry 38: 15994–16000

    Article  PubMed  CAS  Google Scholar 

  • Rost B (1999) Twilight zone of protein sequence alignments. Prot Engineering 12: 85–94

    Article  CAS  Google Scholar 

  • Rujan T and Martin W (2001) how many genes in Arabidopsis come from cyanobacteria? An estimate from 386 protein phylogenies. Trends Genet 17: 113–120

    Google Scholar 

  • Russell RB (1998) Detection of protein three-dimensional side-chain patterns: New examples of convergent evolution. J Mol Biol 279: 1211–1227

    Article  PubMed  CAS  Google Scholar 

  • Rzhetsky A and Nei M (1994) Unbiased estimates of the number of nucleotide substitutions when substitution rate varies among different sites. J Mol Evol 38: 295–299

    Article  PubMed  CAS  Google Scholar 

  • Saitou N and Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425

    PubMed  CAS  Google Scholar 

  • Sandstrom S, Park Y-I, Oquist G and Gustafsson P (2001) CP43 the isiA gene product, functions as an excitation energy dissipator in the cyanobacterium Synechococcus sp. PCC 7942. Photochem Photobiol 74: 431–437

    Article  PubMed  CAS  Google Scholar 

  • Satoh S, Ikeuchi M, Mimuro M and Tanaka A (2001) Chlorophyll b expressed in cyanobacteria functions as a light-harvesting antenna in Photosystem I through flexibility of the proteins. J Biol Chem 276: 4293–4297

    Article  PubMed  CAS  Google Scholar 

  • Savard F, Richard C and Guertin M (1996) The Chlamydomonas reinhardtii LI818 gene represents a distant relative of the cabUW genes that is regulated during the cell cycle and in response to illumination. Plant Mol Biol 32: 461–473

    Article  PubMed  CAS  Google Scholar 

  • Schirmer T, Bode W, Huber R, Sidler W and Zuber H (1985) X- ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol 184: 257–277

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW (1993) Microfossils of the early archean apex chert: New evidence of the antiquity of life. Science 260: 640–646

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW (1994) The oldest known records of life: Early Archean stromatolites, microfossils, and organic matter. In Bengtson S (ed) Early Life on Earth. Nobel Symposium No. 84, pp 193–206. Columbia University Press, New York

    Google Scholar 

  • Schopf JW and Klein C (1992) The Proterozoic Biosphere, a multidisciplinary study. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ and Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416: 73–76

    Article  PubMed  CAS  Google Scholar 

  • Schubert W-D, Klukas O, Saenger W, Witt HT, Fromme P and Krauss N (1998) A common ancestor for oxygenic and anoxy-genic photosynthetic systems: A comparison based on the structural model of Photosystem I. J. Mol. Biol. 280: 297–314

    Google Scholar 

  • Schuler GD, Altschul SF and Lipman DJ (1991) A workbench for multiple alignment construction and analysis. Proteins Struct Funct Genet 9: 180–190

    Article  PubMed  CAS  Google Scholar 

  • Schultz HN and Jorgensen BB (2001) Big bacteria. Annu Rev Microbiol 55: 105–137

    Article  Google Scholar 

  • Schütz M, Brugna M, Lebrun E, Baymann F, Huber R, Stetter KO, Hauska G, Toci R, Lemesle-Meunier D, Tron P, Schmidt C and Nitschke W (2000) Early evolution of cytochrome be complexes. J Mol Biol 300: 663–675

    Article  PubMed  CAS  Google Scholar 

  • Schwartz RM and Dayhoff MO (1978) Origins of prokaryotes, eukaryotes, mitochondria, andchloroplasts. Science 199: 395–403

    Article  PubMed  CAS  Google Scholar 

  • Schwender J, Gemunden C and Lichtenthaler HK (2001) Chlorophyta exclusively use the 1 -deoxyxylulose 5-phosphate/ 2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212: 416–423

    Article  PubMed  CAS  Google Scholar 

  • Sidler WA (1995) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 140–216. Kluwer Academic, Dordrecht

    Google Scholar 

  • Simoneit BR, Summons RE and Jahnke LL (1998) Biomarkers as tracers for life on early earth and Mars. Origins Life Evol Biosphere 28: 475–483

    Article  CAS  Google Scholar 

  • Stackebrandt, E., Rainey, F.A., Ward-Rainey, N (1996) Anoxygenic phototrophy across the phylogenetic spectrum: Current understanding and future perspectives. Arch Microbiol. 166: 211–223

    Google Scholar 

  • Steiner JM and Löffelhardt W (2002) Protein import into cyanelles. Trends PI Sei 7: 72–77

    Article  CAS  Google Scholar 

  • Stewart C-B (1993) The powers and pitfalls of parsimony. Nature 361: 603–607

    Article  PubMed  CAS  Google Scholar 

  • Stiller JW and Hall BD (1997) The origin of red algae: Implications for plastid evolution. Proc Natl Acad Sei USA 94: 4520–4525

    Article  CAS  Google Scholar 

  • Stoebe B and Kowallik KV (1999) Gene-cluster analysis in chloroplast genomics. Trends Genet 15: 344–347

    Article  PubMed  CAS  Google Scholar 

  • Strimmer K and von Haeseler A (1996) Quartet puzzling: A quartet maximum-likelihood methods for reconstructing tree topologies. Mol Biol Evol 13: 964–969

    Article  CAS  Google Scholar 

  • Summons RE, Jahnke LL, Hope JM and Logan GA (1999) 2- Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400: 554–557

    Google Scholar 

  • Suzuki JY, Bolivar DW and Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet 31: 61–89

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (1999) Phylogenetic analysis using parsimony (and other methods) PAUP* 4.0 (test version). Sinauer, Sunderland

    Google Scholar 

  • Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: Frank HA, Young J, Britton G and Cogdell RJ (eds) The Photochemistry of Carotenoids, pp 3969. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Takaichi S and Mimuro M (1998) Distribution and geometric isomerism of neoxanthin in oxygenic phototrophs- 9’-eis, a sole molecular form. Plant Cell Physiol 39: 968–977

    Article  CAS  Google Scholar 

  • Talyzina NM, Moldowan JM, Johannisson A and Fago FJ (2000) Affinities of Early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers. Rev Paleobotany Palynology 108: 37–53

    Article  Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka NK and Yoshida K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95: 12719–12723

    Article  PubMed  CAS  Google Scholar 

  • Teramoto H, Ono T and Minagawa J (2001) Identification of Lhcb gene family encoding the light-harvesting chlorophyll-«/ b proteins of Photosystem II in Chlamydomonas reinhardtii. Plant Cell Physiol 42: 849–856

    Article  PubMed  CAS  Google Scholar 

  • Thomas J-C and Passaquet C (1999) Characterization of a phycoerythrin without a-subunits from a unicellular red alga. J Biol Chem 274: 2472–2482

    Article  PubMed  CAS  Google Scholar 

  • Ting CS, Rocap G, King J and Chisholm SW (2001) Phycobiliprotein genes of the marine photosynthetic prokaryote Prochlorococcus: evidence for rapid evolution of genetic heterogeneity. Microbiology 147: 3171–3182

    PubMed  CAS  Google Scholar 

  • Ting CS, Rocap G, King J and Chisholm SW (2001) Cyanobacterial photosynthesis in the oceans: The origins and significance of divergent light-harvesting strategies. Trends Microbiol 10: 134–142

    Google Scholar 

  • Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T and Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400: 159–162

    Article  PubMed  CAS  Google Scholar 

  • Turner S (1997) Molecular systematics of oxygenic photosynthetic bacteria. PI Syst Evol (Suppl) 11: 13–52

    Article  CAS  Google Scholar 

  • Turner S, Pryer KM, Miao VPW and Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46: 327–338

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y, Van der Auwera G and De Wachter R (1996) The evolution of stramenopiles and alveolates as derived by ‘substitution rate calibration’ of small ribosomal subunit RNA. JMol Evol 42; 201–210

    Article  Google Scholar 

  • Van de Peer Y, Baldauf SL, Doolittle WF and Meyer A (2000) An updated and comprehensive rRNA phylogeny of ( Crown) eukaryotes based on rate-calibrated evolutionary distances. J Mol Evol 51: 565–576

    Google Scholar 

  • Van der Staay GWM, Yurkova N and Green BR (1998) The 38 kDa chlorophyll a/b protein of the prokaryote Prochlorothrix hollandica is encoded by a divergentpeb gene. Plant Mol Biol 36: 709–716

    Article  PubMed  Google Scholar 

  • Vassilieva EV, Stirewalt VL, Jakobs CU, Frigaard N-U, Baker MA, Sotak AM and Bryant DA (2002) Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH and CsmX. Biochemistry 41: 4358–4370

    Google Scholar 

  • Vermaas WFJ (1994) Evolution of heliobacteria: Implications for photosynthetic reaction center complexes. Photosynth Res 41: 285–294

    Article  PubMed  CAS  Google Scholar 

  • Viale AM, Arakaki AK, Soncini FC and Ferreyra RG (1994) Evolutionary relationships among eubacterial groups as inferred from GroEL (chaperonin) sequence comparisons. Int J Syst Bacteriol 44: 527–533

    Article  PubMed  CAS  Google Scholar 

  • Vision TJ, Brown DG and Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290: 2114–2117

    Article  PubMed  CAS  Google Scholar 

  • Wedel N, Klein R, Ljungberg U, Andersson B and Herrmann RG (1992) The single-copy genepsbS codes for a phylogenetically intriguing 22 kDa polypeptide of Photosystem II. FEBS Lett 314: 61–66

    Article  PubMed  CAS  Google Scholar 

  • Wedemeyer GJ, Kidd DG and Glazer AN (1996) Cryptomonad biliproteins: Bilin types and locations. Photosynth Res 48: 163–170

    Google Scholar 

  • Whelan S and Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 691–699

    Article  PubMed  CAS  Google Scholar 

  • Wilk K, Harrop SJ, Jankova L, Edler D, Keenan G, Sharpies FP, Hiller RC and Curmi PMG (1999) Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: Crystal structure of a cryptophyte phycoerythrin at 1.63A. Proc Natl Acad Sci USA 96: 8901–8906

    Article  PubMed  CAS  Google Scholar 

  • Wilmotte A (1995) Molecular evolution and taxonomy of the cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 1–25. Kluwer Academic, Dordrecht

    Google Scholar 

  • Wistow G (1993) Lens crystallins: Gene recruitment and evolutionary dynamism. Trends Biochem Sci 18: 301–306

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial Evolution. Microbiol Rev 51: 222–271

    Google Scholar 

  • Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA 95: 6854–6859

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Kandler O and Wheelis ML (1990) Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87: 4576–4579

    Google Scholar 

  • Wolfe KH and Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708–713

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Li W-H and Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84: 9054–9058

    Article  PubMed  CAS  Google Scholar 

  • Wiithrich K L, Bovet L, Hunziger PE, Donnison IS and Hortensteiner S (2000) Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. Plant J 21: 189–198

    Article  Google Scholar 

  • Xiao SH, Knoll AH and Yuan XL (1998) Morphological reconstruction of Miaohephyton bifurcatum, a possible brown alga from the Neoproterozoic Doushantuo Formation, South China. J Paleontology 72: 1072–1086.

    Google Scholar 

  • Xiong J and Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53: 503–521

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Inoue K and Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Nat Acad Sci US 95: 14851–56

    Article  CAS  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Vavilin D and Vermaas W (2001) Chlorophyll b can serve as the major pigment in functional Photosystem II complexes of cyanobacteria. Proc Nat Acad Sci USA 98: 14168–14173

    Article  PubMed  CAS  Google Scholar 

  • Zauner S, Fraunholz M, Wastl J, Penny S, Beaton B, Cavalier- Smith T, Maier U-G and Douglas S (2000) Chloroplast protein and centrosomal genes, a tRN A intron, and odd telomeres in an unusually compact eukaryotic genome, the cryptomonad nucleomorph. Proc Natl Acad Sci USA 97: 200–205

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Green BR and Cavalier-Smith T (2000) Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: A possible common origin for sporozoan and dinoflagellate plastids. J Mol Evol 51: 26–60

    Google Scholar 

  • Zouni A, Witt H-T, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Â resolution. Nature 409: 739–743

    Article  PubMed  CAS  Google Scholar 

  • Zuber H and Cogdell RJ (1995) Structure and organization of purple bacterial antenna complexes. In: Blankenship, RE, Madigan MT and Bauer CE (eds): Anoxygenic Photosynthetic Bacteria, pp 315–348, Kluwer Academic, Dordrecht

    Google Scholar 

  • Zuber H and Brunisholz RA (1991) Structure and function of antenna polypeptides and chlorophyll-protein complexes: Principles and variability. In: Scheer H (ed.) Chlorophylls, pp 627–704, CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Green, B.R. (2003). The Evolution of Light-harvesting Antennas. In: Green, B.R., Parson, W.W. (eds) Light-Harvesting Antennas in Photosynthesis. Advances in Photosynthesis and Respiration, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2087-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2087-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5468-5

  • Online ISBN: 978-94-017-2087-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics