Skip to main content

The origin of plastids and their spread via secondary symbiosis

  • Chapter
Origins of Algae and their Plastids

Part of the book series: Plant Systematics and Evolution ((SYSTEMATICS,volume 11))

Abstract

The endosymbiotic, cyanobacterial nature of plastids is clearly established, but several fundamental issues concerning the origin and early evolution of plastids remain unresolved. One key question is whether plastids are monophyletic (derived from a single cyanobacterial ancestor) or polyphyletic (derived from more than one ancestor). This issue is complicated by the presence in many photosynthetic eukaryotes of secondary plastids, acquired by ingestion of a eukaryote, itself already equipped with plastids, rather than by direct ingestion of a free-living cyanobacterium. A review of the phylogenetic evidence from plastid genes indicates that the three major lineages of primary plastids (red, green, and glaucocystophyte) are probably monophyletic. Mitochondrial data further support this conclusion for red and green plastids (but are unavailable for glaucocystophytes), while nuclear data are largely unresolved. If plastids are monophyletic, then the pigment diversity of plastids must postdate their status as endosymbiotic organelles, but whether this diversity arose primarily by acquisition or loss is nuclear. Secondary endosymbiosis has greatly multiplied the variety of photosynthetic eukaryotes. A secondary origin of plastids is unequivocal for cryptomonads and chlorarachniophytes, is likely for heterokonts, haptophytes, and euglenophytes, and is suggested for the nonphotosynthetic parasites of phylum Apicomplexa. The remarkable plastid diversity of dinoflagellates appears to be the result of multiple secondary and tertiary endosymbiotic events. A consistent feature of all plastid genomes is extreme reduction relative to their cyanobacterial progenitors via outright gene loss, transfer of genes to the nuclear genome, and substitution by genes of nuclear ancestry. Most of this reduction seems to have occurred relatively soon after primary endosymbiosis, before the emergence of the major lineages of plastids, yet recent data also reveal surprising diversity of gene content among these lineages. The rubisco genes (rbcLS) of primary plastids on the red lineage are not related to those of cyanobacteria and seem to have been acquired via horizontal gene transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apt, K. E., Hoffman, N. E., Grossman, A. R., 1993: The gamma subunit of R-phycoerythrin and its possible mode of transport into the plastids of red algae. — J. Biol. Chem. 268: 16206–16215.

    Google Scholar 

  • Baldauf, S., Manhart, J., Palmer, J. D., 1990: Different fates of the chloroplast tufA gene following its transfer to the nucleus in green algae. — Proc. Natl. Acad. Sci. USA 87: 5317–5321.

    PubMed  CAS  Google Scholar 

  • -Palmer, J. D., 1993: Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. — Proc. Natl. Acad. Sci. USA 90: 11558–11562.

    PubMed  CAS  Google Scholar 

  • Bhattacharya, D., Medlin, L., 1995: The phylogeny of plastids: A review based on comparisons of small-subunit ribosomal RNA coding regions. — J. Phycol. 31: 489–498.

    CAS  Google Scholar 

  • -Schmidt, H. A., 1997: Division Glaucocystophyta. — In Bhattacharya, D., (Ed): The origins of algae and their plastids. — Pl. Syst. Evol. [Suppl.] 11: 139–148.

    Google Scholar 

  • -Weber, K., 1997: The actin gene of the glaucocystophyte Cyanophora paradoxa: Analysis of the coding region and introns and an actin phylogeny of eukaryotes. — Curr. Genet. 31: 439–446.

    PubMed  CAS  Google Scholar 

  • -Helmchen, T., Melkonian, M., 1995a: Molecular evolutionary analyses of nuclearencoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphina and the Chlorarachniophyta. — J. Eukaryote. Microbiol. 42: 65–69.

    CAS  Google Scholar 

  • --Bibeau, C., Melkonian, M., 1995b: Comparisons of nuclear-encoded small-subunit ribosomal RNAs reveal the evolutionary position of the Glaucocystophyta. — Molec. Biol. Evol. 12: 415–420.

    PubMed  CAS  Google Scholar 

  • Boczar, B. A., Delaney, T. P., Cattolico, R. A., 1989: Gene for the ribulose-1,5-bisphosphate carboxylase small subunit protein is similar to that of a chemoautotrophic bacterium. — Proc. Natl. Acad. Sci. USA 86: 4996–4999.

    PubMed  CAS  Google Scholar 

  • Boudreau, E., Otis, C., Turmel, M., 1994: Conserved gene clusters in the highly rearranged chloroplast genomes of Chlamydomonas moewusii and Chlamydomonas reinhardtii. — Pl. Molec. Biol. 24: 585–602.

    CAS  Google Scholar 

  • Bouget, F.-Y., Kerbourch, C., Liaud, M.-F., Loiseauxde Goër, S., Quatrano, R. S., Cerff, R., Kloareg, B., 1995: Structural features and phylogeny of the actin gene of Chondrus crispus (Gigartinales, Rhodophyta). — Curr. Genet. 28: 164–172.

    PubMed  CAS  Google Scholar 

  • Boyen, C., Leblanc, C., Bonnard, G., Grienenberger, J. M., Kloareg, B., 1994: Nucleotide sequence of the cox3 gene from Chondrus crispus: evidence that UGA encodes tryptophan and evolutionary implications. — Nucl. Acids Res. 22: 1400–1403.

    PubMed  CAS  Google Scholar 

  • Brinkmann, H., Martin, W., 1996: Higher-plant chloroplast and cytosolic 3-phosphoglycerate kinases: a case of endosymbiotic gene replacement. — Pl. Molec. Biol. 30: 65–75.

    CAS  Google Scholar 

  • Bryant, D. A., 1992: Puzzles of chloroplast ancestry. — Curr. Biol. 2: 240–242.

    PubMed  CAS  Google Scholar 

  • Bullerjahn, G. S., Post, A. F., 1993: The prochlorophytes: are they more than just chlorophyll a/b-containing cyanobacteria? — Crit. Rev. Microbiol. 19: 43–59.

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T., 1993a: Kingdom Protozoa and its 18 phyla. — Microbiol. Rev. 47: 953–994.

    Google Scholar 

  • -1993b: The origin, losses and gains of chloroplasts. — In Lewin, R., (Ed.): Origins of plastids, pp. 291–348. — New York, London: Chapman & Hall.

    Google Scholar 

  • -1995: Membrane heredity, symbiogenesis, and the multiple origins of algae. — In Arai, R., Kato, M., Doi, Y., (Eds): Biodiversity and evolution, pp. 75–114. — Tokyo: National Science Museum.

    Google Scholar 

  • -Couch, J. A., Thorsteinsen, K. E., Gilson, P., Deane, J. A., Hill, D. R. A., McFadden, G. I., 1997: Cryptomonad nuclear and nucleomorph 18s rRNA phylogeny — Eur. J. Phycol. 31 (in press).

    Google Scholar 

  • Delwiche, C. F., Kuhsel, M., Palmer, J. D., 1995: Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. — Molec. Phylogenet. Evol. 4: 110–128.

    PubMed  CAS  Google Scholar 

  • -Palmer, J. D., 1996: Rampant horizontal gene transfer and duplication of rubisco genes in eubacteria and plastids. — Molec. Biol. Evol. 13: 873–882.

    PubMed  CAS  Google Scholar 

  • Dodge, J. D., 1989: Phylogenetic relationships of dinoflagellates and their plastids. — In Green, J. C., Leadbeater, B. S. C., Diver, W. L., (Eds): The chromophyte algae: problems and perspectives, pp. 207–227. — Oxford: Clarendon Press.

    Google Scholar 

  • Douglas, S. E., 1992: Eukaryote-eukaryote endosymbioses: insights from studies of a cryptomonad alga. — BioSystems 8: 57–68.

    Google Scholar 

  • -1994: Chloroplast origins and evolution. — In Bryant, D. A., (Ed.): The molecular biology of cyanobacteria, pp. 91–118. — Amsterdam: Kluwer.

    Google Scholar 

  • -Murphy, C. A., 1994: Structural, transcriptional, and phylogenetic analyses of the atpB gene cluster from the plastid of Cryptomonas sp. (Cryptophyaceae). — J. Phycol. 30: 329–340.

    Google Scholar 

  • Egea, N., Lang-Unnasch, N., 1995: Phylogeny of the large extrachromosomal DNA of organisms in the Phylum Apicomplexa. — J. Eukaryote Microbiol. 42: 679–684.

    CAS  Google Scholar 

  • Emes, M. J., Tobin, A. K., 1993: Control of metabolism and development in higher plant plastids. — Int. Rev. Cytol. 145: 149–215. — Orlando: Academic Press.

    Google Scholar 

  • Feagin, J. E., 1994: The extrachromosomal DNAs of apicomplexan parasites. — Annual Rev. Microbiol. 48: 81–104.

    CAS  Google Scholar 

  • Fujiwara, S., Iwahashi, H., Someya, J., Nishikawa, S., Minaka, N., 1993: Structure and cotranscription of the plastid-encoded rbcL and rbcS genes of Pleurochrysis carterae (Prymnesiophyta). — J. Phycol. 29: 347–355.

    CAS  Google Scholar 

  • Gantt, J. S., Baldauf, S., Calie, P., Weeden, N., Palmer, J. D., 1991: Transfer of rp122 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron. — EMBO J. 10: 3073–3078.

    PubMed  CAS  Google Scholar 

  • Gibbs, S. P., 1978: The chloroplasts of Euglena may have evolved from symbiotic green algae. — Canad. J. Bot. 56: 2883–2889.

    Google Scholar 

  • -1981: The chloroplast endoplasmic reticulum, structure, function, and evolutionary significance. — Int. Rev. Cytol. 72: 49–99.

    Google Scholar 

  • -1993: The evolution of algal chloroplasts. — In Lewin, R. A., (Ed): Origins of plastids. pp. 107–121. — New York: Chapman and Hall.

    Google Scholar 

  • Gilson, P. R., McFadden, G. I., 1996: The miniaturized nuclear genome of a eukaryotic endosymbiont contains genes that overlap, genes that are cotranscribed, and the smallest known spliceosomal introns. — Proc. Natl. Acad. Sci. USA 93: 7737–7742.

    PubMed  CAS  Google Scholar 

  • -1997: Good things in small packages: the tiny genomes of chlorarachniophyte endosymbionts. — Bioessays 19: 167–173.

    PubMed  CAS  Google Scholar 

  • Giovannoni, S., Turner, S., Olsen, G., Barns, S., Lane, D., Pace, N., 1988: Evolutionary relationships among cyanobacteria and green chloroplasts. — J. Bacteriol. 170: 3584–3592.

    PubMed  CAS  Google Scholar 

  • Gockel, G., Hachtel, W., Baier, S., Fliss, C., Henke, M., 1994: Genes for components of the chloroplast translational apparatus are conserved in the reduced 73-kb plastid DNA of the nonphotosynthetic euglenoid flagellate Astasia longa. — Curr. Genet. 26: 256–262.

    PubMed  CAS  Google Scholar 

  • Gray, M. W., 1992: The endosymbiont hypothesis revisited. — Int. Rev. Cytol. 141: 233–357.

    PubMed  CAS  Google Scholar 

  • -1995: Mitochondrial evolution. — In Levings, C. S. III, Vasil, I. K., (Eds): The molecular biology of plant mitochondria, pp. 635–659. — Dordrecht: Kluwer.

    Google Scholar 

  • Spencer, D. F., 1996: Organellar evolution. — In Roberts, D. M., Sharp, P., Alderson, G., Collins, M., (Eds): Evolution of microbial life, pp. 109–126. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Haberhausen, G., Zetsche, K., 1994: Functional loss of all ndh genes in an otherwise relatively unaltered plastid genome of the holoparasitic flowering plant Cuscuta reflexa. — Pl. Molec. Biol. 24: 217–222.

    CAS  Google Scholar 

  • Hackstein, J. H. P., 1995: A photosynthetic ancestry for all eukaryotes? — Trends Ecol. Evol. 10: 247.

    PubMed  CAS  Google Scholar 

  • Hallick, R., Hong, L., Drager, R., Favreau, M., Monfor, A., Orsat, B., Spielmann, A., Stutz, E., 1993: Complete sequence of Euglena gracilis chloroplast DNA. — Nucl. Acids Res. 21: 3537–3544.

    PubMed  CAS  Google Scholar 

  • Helmchen, T. A., Bhattacharya, D., Melkonian, M., 1995: Analyses of ribosomal RNA sequences from glaucocystophyte cyanelles provide new insights into the evolutionary relationships of plastids. — J. Molec. Evol. 41: 203–210.

    PubMed  CAS  Google Scholar 

  • Henze, K., Schnarrenberger, C., Kellermann, J., Martin, W., 1994: Chloroplast and cytosolic triosephosphate isomerase from spinach: Purification, microsequencing and cDNA sequence of the chloroplast enzyme. — Pl. Molec. Biol. 26: 1961–1973.

    CAS  Google Scholar 

  • -Badr, A., Wettern, M., Cerff, R., Martin, W., 1995: A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution. — Proc. Natl. Acad. Sci. USA 92: 9122–9126.

    PubMed  CAS  Google Scholar 

  • Herdman, M., Janvier, M., Rippka, R., Stanier, R., 1979: Genome size of cyanobacteria. — J. Gen. Microbiol. 111: 73–85.

    Google Scholar 

  • Hess, W. R., Weihe, A., Loiseaux-de Goër, S., Partensky, F., Vaulot, D., 1995: Characterization of the single psbA gene of Prochlorococcus marinus CCMP 1375 (Prochlorophyta). — Pl. Molec. Biol. 27: 1189–1196.

    CAS  Google Scholar 

  • -Partensky, F., van der Staay, G. W. M., Garcia-Fernandez, J. M., Borner, T., Vaulot, D., 1996: Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. — Proc. Natl. Acad. Sci. USA 93: 1126–1130.

    Google Scholar 

  • Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C.-R., Meng, B.-Y., Li, Y.-Q., Kanno, A., Nishizawa, Y., Hirai, A., Shinozaki, K., Sugiura, M., 1989: The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. — Molec. Gen. Genet. 217: 185–194.

    PubMed  CAS  Google Scholar 

  • Hori, H., Osawa, S., 1987: Origin and evolution of organisms as deduced from 5s ribosomal RNA sequences. — Molec. Biol. Evol. 4: 445–472.

    PubMed  CAS  Google Scholar 

  • Jakowitch, J., Neumann-Spallart, C., Ma, Y, Steiner, J., Schenk, H. E. A., Bohnert, H. J., Löffelhardt, W., 1996: In vitro import of pre-ferredoxin-NADP+-oxidoreductase from Cyanophora paradoxa into cyanelles and into pea chloroplasts. — FEBS Lett. 381: 153–155.

    Google Scholar 

  • Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura, M., Sasamoto, S., Kimura, T., Hosouchi, T., Matsuno, A., Muraki, A., Kakazaki, N., Naruo, K., Okumura, S., Shimpo, S., Takeuchi, C., Wada, T., Watanabe, A., Yamada, M., Yasuda, M., Tabata, S., 1996: Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. sequence determination of the entire genome and assignment of potential proteincoding regions. — DNA Res. 3: 109–136.

    PubMed  CAS  Google Scholar 

  • Keeling, P. J., Doolittle, W. F., 1996: Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. — Molec. Biol. Evol. 13: 1297–1305.

    PubMed  CAS  Google Scholar 

  • -Doolittle, F., 1997: Evidence that eukaryotic triosephosphate isomerase is of aphaproteobacterial origin. — Proc. Natl. Acad. Sci. USA 94: 1270–1275.

    PubMed  CAS  Google Scholar 

  • Kies, L., Kremer, B. P., 1990: Phylum Glaucocystophyta. — In Margulis, L., Corliss, J. O., Melkonian, M., Chapman, D. J., (Eds): Handbook of Protoctista, pp. 152–166. — Boston: Jones and Bartlett.

    Google Scholar 

  • Knoll, A., 1992: The early evolution of eukaryotes: a genological perspective. — Science 256: 622–627.

    PubMed  CAS  Google Scholar 

  • -1994: Proterozoic and early cambrian protists: evidence for accelerating evolutionary tempo. — Proc. Natl. Acad. Sci. USA 91: 6743–6750.

    PubMed  CAS  Google Scholar 

  • -Golubic, S., 1992: Proterozoic and living cyanobacteria. — In Schidlowski, M., & al. (Eds): Early organic evolution: Implications for mineral and energy resources, pp. 455-457–455-458. — Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Köhler, S., Delwiche, C. F., Denny, P. W., Tilney, L. G., Webster, P., Wilson, R. J. M., Palmer, J. D., Roos, D. S., 1997: A plastid of probable green algal origin in apicomplexan parasites. — Science 275: 1485–1489.

    PubMed  Google Scholar 

  • Kowallik, K. V., 1994: From endosymbionts to chloroplasts: evidence for a single prokaryotic/eukaryotic endocytobiosis. — Endocytobiosis Cell Res. 10: 137–149.

    Google Scholar 

  • -Stoebe, B., Schaffran, I., Kroth-Panic, P., Freier, U., 1995: The chloroplast genome of a chlorophyll a+c-containing alga, Odontella sinensis. — Pl. Molec. Biol. Reporter 13: 336–342.

    Google Scholar 

  • Krishnan, S., Barnabas, S., Barnabas, J., 1990: Interrelationships among major protistan groups based on a parsimony network of 5s rRNA sequences. — BioSystems 24: 135–144.

    PubMed  CAS  Google Scholar 

  • Lang, B. F., Burger, G., O’Kelly, C. J., Gray, M. W., 1997: Organelle genome megasequencing program. — http://megasun.bch. umontreal.ca/maps/globaltree.gif

    Google Scholar 

  • La Roche, J., van der Staay, G. W. M., Partensky, F., Ducret, A., Aebersold, A., Li, R., Golden, S. S., Hiller, R. G., Wrench, P. M., Larkum, A. W. D., Green, B. R., 1996: Independent evolution of the prochlorophyte and green plant chlorophyll a/b lightharvesting proteins. — Proc. Natl. Acad. Sci. USA 93: 15244–15248.

    Google Scholar 

  • Larkum, A. W. D., Scaramuzzi, C., Cox, G. C., Hiller, R. G., Turner, A. G., 1994: Lightharvesting chlorophyll c-like pigment in Prochloron. — Proc. Natl. Acad. Sci. USA 91: 679–683.

    PubMed  CAS  Google Scholar 

  • Leipe, D. D., Wainwright, P. O., Gunderson, J. H., Porter, D., Patterson, D. J., Valois, F., Himmerich, S., Sogin, M. L., 1994: The stramenophiles from a molecular perspective: 16s-like rRNA sequences from Labyrinthuloides minuta and Cafeteria roenbergensis. — Phycologia 33: 369–377.

    Google Scholar 

  • Liaud, M.-F, Valentin, C., Brandt, U., Bouget, F.-Y., Kloareg, B., Cerff, B., Cerff, R., 1993: The GAPDH gene system of the red alga Chondrus crispus:promotor structures, intron/exon organization, genomic complexity and differential expression of genes. — Pl. Molec. Biol. 23: 981–994.

    CAS  Google Scholar 

  • -Valentin, C., Martin, W., Bouget, F.-Y., Kloareg, B., Cerff, R., 1994: The evolutionary origin of red algae as deduced fom the nuclear genes encoding cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenases from Chondrus Crispus. — J. Molec. Evol. 38: 319–327.

    PubMed  CAS  Google Scholar 

  • -Brandt, U., Cerff, R., 1995: The marine red alga Chondrus crispus has a highly divergent β-tubulin gene with a characteristic 5′ intron: functional and evolutionary implications. — Pl. Molec. Biol. 28: 313–325.

    CAS  Google Scholar 

  • Liu, Q., Baldauf, S., Reith, M., 1996: Elongation factor la genes of the red alga Porphyra purpurea include a novel, developmentally specialized variant. — Pl. Molec. Biol. 31: 77–85.

    CAS  Google Scholar 

  • Löffelhardt, W., Bohnert, H. J., 1994: Molecular biology of cyanelles. — In Bryant, D. A., (Ed.): The molecular biology of the Cyanobacteria, pp. 65–89. — Netherlands: Kluwer.

    Google Scholar 

  • Loiseaux-de Göer, S., 1994: Plastid lineages. — Phycol. Res. 10: 137–177.

    Google Scholar 

  • Maier, R. M., Neckermann, K., Igloi, G. L., Kössel, H., 1995: Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. — J. Molec. Biol. 251: 614–628.

    PubMed  CAS  Google Scholar 

  • Martin, W. S., Somerville, C. C., Loiseaux-de Göer, S., 1992: Molecular phylogenies of plastid origins and algal evolution. — J. Molec. Evol. 35: 385–404.

    CAS  Google Scholar 

  • Mcfadden, G. I., Gilson, P., 1995: Something borrowed, something green: lateral transfer of chloroplasts by secondary endosymbiosis. — Trends Ecol. Evol. 10: 12–17.

    PubMed  CAS  Google Scholar 

  • -Reith, M. E., Munholland, J., Lang-Unnasch, N., 1996: Plastid in human parasites. — Nature 381: 482.

    PubMed  CAS  Google Scholar 

  • -Waller, R. E, Reith, M. E., Lang-Unnasch, N., 1997a: Plastids in apicomplexan parasites. — In Bhattacharya, D., (Ed.): The origins of algae and their plastids. — Pl. Syst. Evol., [Suppl.] 11: 261–287.

    Google Scholar 

  • -Gilson, P. R., Hofmann, C. J. B., 1997b: Division Chlorarachniophyta. — In Bhattacharya, D., (Ed.): The origins of algae and their plastids. — Pl. Syst. Evol., [Suppl.] 11: 175–185.

    Google Scholar 

  • Medlin, L. K., Cooper, A., Hill, C., Wrieden, S., Wellbrock, U., 1995: Phylogenetic position of the Chromista plastids based on small subunit rRNA coding regions. — Curr. Genet. 28: 560–565.

    PubMed  CAS  Google Scholar 

  • -Kooistra, W. H. C. E., Potter, D., Saunders, G. W., Andersen, R. A., 1997: Phylogenetic relationships of the ‘golden algae’ (haptophytes, heterokont chromophytes) — In Bhattacharya, D., (Ed.): The origins of algae and their plastids. — Pl. Syst. Evol., [Suppl.] 11: 187–219.

    Google Scholar 

  • Midroshnichenko Dolganov, N. A., Bhaya, D., Grossman, A. R., 1995: Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. — Proc. Natl. Acad. Sci. USA 92: 636–640.

    Google Scholar 

  • Morden, C. W., Golden, S. S., 1989: psbA genes indicate common ancestry of prochlorophytes and chloroplasts. — Nature 337: 382–385.

    PubMed  CAS  Google Scholar 

  • -Delwiche, C. F., Kuhsel, M., Palmer, J. D., 1992: Gene phylogenies and the endosymbiotic origin of plastids. — Biosystems 28: 75–90.

    PubMed  CAS  Google Scholar 

  • Morse, D., Salois, P., Markovic, P., Hastings, J. W., 1995: A nuclear-encoded form II RuBisCo in dinoflagellates. — Science 268: 1622–1624.

    PubMed  CAS  Google Scholar 

  • Nelissen, B., Van de Peer, Y., Wilmotte, A., De Wachter, R., 1995: An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16s rRNA sequences. — Molec. Biol. Evol. 6: 1166–1173.

    Google Scholar 

  • Nikoh, N., Hayase, H., Iwabe, H., Kuma, K.-I., Miyata, T., 1994: Phylogenetic relationship of the kingdoms Ammalia, Plantae, and Fungi, inferred from 23 different protein species. — Molec. Biol. Evol. 11: 762–768.

    PubMed  CAS  Google Scholar 

  • Nugent, J., Palmer, J. D., 1991: RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. — Cell 66: 473–481.

    PubMed  CAS  Google Scholar 

  • Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S.-I., Inokuchi, H., Ozeki, H., 1986: Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. — Nature 322: 512–514.

    Google Scholar 

  • Palenik, B., Haselkorn, R., 1992: Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. — Nature 355: 265–267.

    PubMed  CAS  Google Scholar 

  • -Swift, H., 1996: Cyanobacterial evolution and prochlorophyte diversity as seen in DNA-dependent RNA polymerase gene sequences. — J. Phycol. 32: 638–646.

    CAS  Google Scholar 

  • Palmer, J. D., 1985: Comparative organization of chloroplast genomes. — Annual Rev. Genet. 19: 325–354.

    CAS  Google Scholar 

  • -1991: Plastid chromosomes: structure and evolution. — In Bogorad, L., Vasil, I. K., (Eds): The molecular biology of plastids, pp. 5–53. — San Diego: Academic Press.

    Google Scholar 

  • -1992: Green ancestry of malarial parasites. — Curr. Biol. 2: 318–320.

    PubMed  CAS  Google Scholar 

  • -1995: Rubisco rules fall; gene transfer triumphs. — Bioessays 17: 1005–1008.

    PubMed  CAS  Google Scholar 

  • -1997: Organelle genomes: going, going, gone! — Science 275: 790–791.

    PubMed  CAS  Google Scholar 

  • -Delwiche, C., 1996: Second-hand chloroplasts and the case of the disappearing nucleus. — Proc. Natl. Acad. Sci. USA 93: 7432–7435.

    Google Scholar 

  • Paquin, B., Laforest, M. J., Forget, L., Roewer, I., Wang, A., Longcore, J., Lang, B. F., 1997: The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression. — Curr. Genet. 31: 380–395.

    PubMed  CAS  Google Scholar 

  • Pawlowski, J., Bolivar, I., Fahrni, J., Cavalier-Smith, T., Gouy, M., 1996: Early origin of Foraminifera suggested by SSU rRNA gene sequences. — Molec. Biol. Evol. 13: 445–450.

    PubMed  CAS  Google Scholar 

  • Perasso, R., Baroin, A., Qu, L., Bachellerie, J. P., Adoutte, A., 1989: Origin of the algae. — Nature 339: 142–144.

    PubMed  CAS  Google Scholar 

  • Preiser, P., Williamson, D. H., Wilson, R. J. M., 1995: tRNA genes transcribed from the plastid-like DNA of Plasmodium falciparum. — Nucl. Acids Res. 23: 4329–4336.

    PubMed  CAS  Google Scholar 

  • Ragan, M. A., Gutell, R. R., 1995: Are red algae plants? — Bot. L. Linn. Soc. 118: 81–105.

    Google Scholar 

  • Raven, P. H., 1970: A multiple origin for plastids and mitochondria. — Science 169: 641–646.

    PubMed  CAS  Google Scholar 

  • Reith, M., 1995: Molecular biology of rhodophyte and chromophyte plastids. — Annual. Rev. Pl. Physiol. Pl. Molec. Biol. 46: 549–575.

    CAS  Google Scholar 

  • -Munholland, J., 1993: A high-resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. — Pl. Cell. 5: 465–475.

    Google Scholar 

  • --1995: Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. — Pl. Molec. Biol. Reporter 13: 333–335.

    CAS  Google Scholar 

  • Rowan, R., Whitney, S. M., Fowler, A., Yellowlees, D., 1996: Rubisco in marine symbiotic dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs, encoded by a nuclear multi-gene family. — Pl. Cell 8: 539–553.

    CAS  Google Scholar 

  • Runnegar, B., 1992: The tree of life. — In Schopf, J. W., Klein, C., (Eds): The proterozoic biosphere. A multidisciplinary study, pp. 471–475. — New York: Cambridge University Press.

    Google Scholar 

  • Schmidt, M., Dvensen, I., Feierabend, J., 1995: Analysis of the primary structure of the chloroplast isozyme of triosephosphate isomerase from rye leaves by protein and cDNA sequencing indicates a eukaryotic origin of its gene. — Biochim. Biophys. Acta 1261: 257–264.

    PubMed  Google Scholar 

  • Schnepf, E., 1993: From prey via endosymbiont to plastids: comparative studies in dinoflagellates. — In Lewin, R. A., (Ed.): Origins of plastids, pp. 53–76. — New York: Chapman & Hall.

    Google Scholar 

  • Schopf, J. W., 1993: Microfossils of the early archean apex chert: new evidence of the antiquity of life. — Science 260: 640–646.

    PubMed  CAS  Google Scholar 

  • -1994: Disparate rates, differing fates: Tempo and mode of evolution changed from the Precambrian to the Phanerozoic. — Proc. Natl. Acad. Sci. USA 91: 6735–6742.

    PubMed  CAS  Google Scholar 

  • -1996: Are the oldest fossils cyanobacteria? — In Roberts, D. M., Sharp, P., Alderson, G., Collins, M. A., (Eds): Evolution of microbial life, pp. 23–61. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B. Y., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H., Sugiura, M., 1986: The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. — EMBO J. 5: 2043–2049.

    PubMed  CAS  Google Scholar 

  • Sogin, M., 1994: The origin of eukaryotes and evolution into major kingdoms. — In Bengston, S., (Ed.): Early life on earth. Nobel Symposium No. 84, pp. 181–194. — New York: Columbia University Press.

    Google Scholar 

  • -1996: Problems with molecular diversity in the eukarya. — In Roberts, D. M., Sharp, P., Alderson, G., Collins, M. A., (Eds): Evolution of microbial life, pp. 167–184. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Stiller, J. W., Hall, B. D., 1997: The origin of red algae: implications for plastid evolution. — Proc. Natl. Acad. Sci. USA

    Google Scholar 

  • Stirewalt, V., Michalowski, C., Löffelhardt, W., Bohnert, H., Bryant, D., 1995: Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Pl. Molec. Biol. Reporter 13: 327–332.

    CAS  Google Scholar 

  • Tabita, F. R., 1995: The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. — In Blankenship, R. E., Madigan, M. T., Bauer, C. E., (Eds): Anoxygenic photosynthetic bacteria, pp. 885–914. — Amsterdam: Kluwer.

    Google Scholar 

  • Takahashi, H., Takano, H., Yokoyama, A., Hara, Y., Kawano, S., Tohe, A., Kuroiwa, T., 1995: Isolation, characterization and chromosomal mapping of an actin gene from the primitive red alga Cyanidioschyzon merolae. — Curr. Genet. 28: 484–490.

    PubMed  CAS  Google Scholar 

  • Tingey, S. V., Tsai, F.-Y, Edwards, J.W., Walker, E. L., Coruzzi, G. M., 1988: Chloroplast and cytoplasmic glutamine synthetase are encoded by homologous nuclear genes which are differentially expressed in vivo. — J. Biol. Chem. 263: 9651–9657.

    PubMed  CAS  Google Scholar 

  • Triemer, R. E., Farmer, M. A., 1991: An ultrastructural comparison of the mitotic apparatus, feeding apparatus, flagellar apparatus and cytoskeleton in euglenoids and kinetoplastids. — Protoplasma 164: 91–104.

    Google Scholar 

  • Turmel, M., Bellemare, G., Lemieux, C., 1987: Physical mapping of differences between the chloroplast DNAs of the interfertile algae Chlamydomonas eugametos and Chlamydomonas moewusii. — Curr. Genet. 11: 543–552.

    CAS  Google Scholar 

  • Turner, S., 1997: Molecular systematics of oxygenic photosynthetic bacteria. — In Bhattacharya, D., (Ed.): The origins of algae and their plastids. — Pl. Syst. Evol., [Suppl.] 11: 13–52.

    Google Scholar 

  • Urbach, E., Robertson, D. L., Chisholm, S. W., 1992: Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. — Nature 355: 267–269.

    PubMed  CAS  Google Scholar 

  • Vaidya, A. B., Morrisey, M., Plowe, C.V. Kaslow, D. C., Wellems, T. E., 1993: Unidirectional dominance of cytoplasmic inheritance in two genetic crosses of Plasmodium falciparum. — Molec. Cell. Biol. 13: 7349–7357.

    PubMed  CAS  Google Scholar 

  • Valentin, K., Zetsche, K., 1989: The genes of both subunits of ribulose-l,5-bisphosphate carboxylase constitute an operonon the plastome of a red alga. — Curr. Genet. 16: 203–209.

    PubMed  CAS  Google Scholar 

  • Vanden Hoek, C., Mann, D. G., Jahns, H. M., 1995: Algae: an introduction to phycology. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Ver de Peer, Y., Rensing, S. A., Maier, U.-G., De Wachter, R., 1996: Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. — Proc. Natl. Acad. Sci. USA 93: 7732–7736.

    PubMed  Google Scholar 

  • Viale, A. M., Arakaki, A. K., 1994: The chaperone connection to the origins of the eukaryotic organelles. — FEBS Lett. 341: 146–151.

    PubMed  CAS  Google Scholar 

  • -Arakaki, A. K., Soncini, F. C., Ferreyra, R. G., 1994: Evolutionary relationships among eubacterial groups as inferred from GroEL (chaperonin) sequence comparisons. — Int. J. Syst. Bacteriol. 44: 527–533.

    PubMed  CAS  Google Scholar 

  • Vivier, E., Desportes, I., 1989: Phylum Apicomplexa. — In Margulis, L., Corliss, J. O., Melkonian, M., Chapman, D. J., (Eds): Handbook of Protoctista, pp. 549–573. — Boston: Jones & Bartlett.

    Google Scholar 

  • Wainwright, P. O., Hinkle, G., Sogin, M. L., Stickel, S. K., 1993: Monophyletic origins of the metazoa: An evolutionary link with fungi. — Science 260: 340–342.

    Google Scholar 

  • Wakasugi, T., Tsudzuki, J., Ito, S., Nakashima, K., Tsudzuki, T., Sugiura, M., 1994: Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. — Proc. Natl. Acad. Sci. USA 91: 9794–9798.

    PubMed  CAS  Google Scholar 

  • Watanabe, M. M., Suda, S., Inouye, I., Sawaguchi, T., Chihara, M., 1990: Lepidodinium viride gen. et sp. nov. (Gymnodiniales, Dinophyta), a green dinoflagellate with a Chlorophyll a- and b-containing endosymbiont. — J. Phycol. 26: 741–751.

    Google Scholar 

  • Watson, G. M. F., Tabita, F. R., 1996: Regulation, unique gene organization, and unusual primary structure of carbon fixation genes from a marine phycoerythrin-containing cyanobacterium. — Pl. Molec. Biol. 32: 1103–1115.

    CAS  Google Scholar 

  • Whatley, J. M., 1993a: Chloroplast ultrastructure. — In Berner, T., (Ed.): Ultrastructure of microalgae, pp. 135–204. — Boca Raton, FL: CRC Press.

    Google Scholar 

  • -1993b: Membranes and plastid origins. — In Lewin, R. A., (Ed.): Origins of plastids, pp. 77–106. — New York: Chapman & Hall.

    Google Scholar 

  • Whitney, S. M., Shaw, D. C., Yellowlees, D., 1995: Evidence that some dinoflagellates contain a ribulose-l,5-bisphosphate carboxylase/oxygenase related to that of the a-proteobacteria. — Proc. Roy. Soc. London, Ser. B, Biol. Sci. 259: 271–275.

    CAS  Google Scholar 

  • Wilhelm, C., 1987: The existence of chlorophyll c in the Chl b-containing light-harvesting complex of the green alga Mantoniella squamata (Prasinophyceae). — Bot. Acta 101: 7–10.

    Google Scholar 

  • Wilson, R. J. M., Denny, P. W., Preiser, P. R., Rangachari, K., Roberts, K., Roy, A., Whyte, A., Strath, M., Moore, D. J., Moore, P. W., Williamson, D. H., 1996: Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. — J. Molec. Biol. 261: 155–172.

    PubMed  CAS  Google Scholar 

  • Wolfe, G. R., Cunningham, F. X., Durnford, D., Green, B. R., Gantt, E., 1994: Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. — Nature 367: 566–568.

    CAS  Google Scholar 

  • Wolfe, K., Morden, C., Palmer, J. D., 1992: Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. — Proc. Natl. Acad. Sci. USA 89: 10648–10652.

    PubMed  CAS  Google Scholar 

  • Zhou, Y. H., Ragan, M. A., 1994: Cloning and characterization of the nuclear gene encoding plastid glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa. — Curr. Genet. 26: 79–86.

    PubMed  CAS  Google Scholar 

  • --1995: The nuclear gene and cDNAs encoding cytosolic glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa: cloning, characterization and phylogenetic analysis. — Curr. Genet. 28: 324–332.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Delwiche, C.F., Palmer, J.D. (1997). The origin of plastids and their spread via secondary symbiosis. In: Bhattacharya, D. (eds) Origins of Algae and their Plastids. Plant Systematics and Evolution, vol 11. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6542-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6542-3_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83035-2

  • Online ISBN: 978-3-7091-6542-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics