Skip to main content
Log in

Pigment-pigment interactions and secondary structure of reconstituted algal chlorophyll a/b-binding light-harvesting complexes of Chlorella fusca with different pigment compositions and pigment-protein stoichiometries

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Earlier we have shown by in vitro reconstitution experiments that the pigment composition of the chlorophyll alb-binding light-harvesting complex of the green alga Chlorella fusca could be altered in a relatively broad range (Meyer and Wilhelm 1993). In this study we used these reconstituted complexes of different pigment loading to analyze the excitonic interactions between the pigment molecules and the secondary structure by means of circular dichroism spectra in the visible and the far UV spectral regions, respectively. We found that, in contrast to the expectations, the pigment composition and pigment content hardly affected the circular dichroism spectra in the visible spectral region. Reconstituted complexes, independent of their pigment composition, exhibited the most characteristic circular dichroism bands of the native light-harvesting complex, even if one polypeptide bound only 3 chlorophyll a, 3 chlorophyll b and 1–2 xanthophyll molecules. Full restoration of the protein secondary structure, however, could not be achieved. The α-helix content depended significantly on the pigment composition as well as on the pigment-protein ratio of the reconstituted complexes. Further binding of pigments resulted in restoration of the minor excitonic circular dichroism bands, the amplitudes of which depended on the pigment content of the reconstituted complexes. These data suggest that in the reconstitution of light-harvesting complexes a ‘central cluster’ of pigment molecules plays an important role. Further binding of pigments to the ‘peripheral binding sites’ appeared also to stabilize the protein secondary structure of the reconstituted complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD-:

circular dichroism

LHC-:

chlorophyll a/b light-harvesting complex(es)

LHC II-:

light-harvesting complex(es) of Photosystem II of higher plants

LHCP-:

light-harvesting Chl a/b-binding protein(s)

PP-:

polypeptide(s)

References

  • Andersson B and Anderson JM (1986) Lateral heterogenity in the distribution of chlorophyll-protein complexes of thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593: 427–440

    Google Scholar 

  • Bassi R and Wollman FA (1991) The chlorophyll a/b proteins of Photosystem II in Chlamydomonas reinhardtit. Planta 183: 423–433

    Google Scholar 

  • Breton J and Nabedryk E (1987) Pigment and protein organization in reaction center and antenna complexes. In: Barber J (ed) The Light Reactions, pp 159–195. Elsevier Publishers, Amsterdam

    Google Scholar 

  • Buchecker R and Noack K (1995) Circular dichroism. In: Britton G, Liaaen-Jensen S and Pfander H (eds) Carotenoids, pp 63–116. Birkhäuser Verlag, Basel

    Google Scholar 

  • Cammarata KV, Plumley FG and Schmidt GW (1990) Reconstitution of light-harvesting complexes: A single apoprotein binds chlorophyll a, chlorophyll b and xanthophylls. In: Baltscheffsky M (ed) Current Research Photosynthesis, Vol 2, pp 341–344. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Cammarata KV and Schmidt GW (1992) In vitro reconstitution of a light-harvesting gene product: Deletion mutagenesis and analysis of pigment binding. Biochemistry 31: 2779–2789

    Google Scholar 

  • Cammarata KV, Plumley FG and Schmidt GW (1992) Pigment and protein composition of reconstituted light-harvesing complexes and effects of some protein modifications. Photosynth Res 33: 235–250

    Google Scholar 

  • Garab G, Szito T and Faludi-Daniel F (1987) Organization of pigments and pigment-protein complexes of thylakoids revealed by polarized light spectroscopy. In: Barber J (ed) The Light Reactions, pp 305–339. Elsevier Publishers Amsterdam

    Google Scholar 

  • Gottstein J, Scherz A and Scheer H (1993) Bacteriochlorophyll aggregates in positively charged micelles. Biochim Biophys Acta 1183: 413–416

    Google Scholar 

  • Green BR, Pichersky E and Kloppstech K (1991) Chlorophyll a/b-binding proteins: An extended family. TIBS 16: 181–186

    Google Scholar 

  • Grotjohann R, Rho MS and Kowallik W (1992) Influence of blue and red light on the photosynthetic apparatus of Chlorella kessleri. Bot Acta 105: 168–173

    Google Scholar 

  • Gülen D and Knox RS (1984) Absorption and circular dichroism of the chlorophyll-protein CP II: Extention of a trimeric exciton model. Photobiochem Photobiophys 7: 277–286

    Google Scholar 

  • Gülen D, Knox RS and Breton J (1986) Optical effects of sodium dodecyl sulfate treatment of the isolated light-harvesting complex of higher plants. Photosynth Res 9: 13–20

    Google Scholar 

  • Hase E and Morimura Y (1971) Synchronous and homocontinuos cultures of algae. In: San Pietro (ed) Methods in Enzymology, Vol 23, pp 81–106. Academic Press, New York

    Google Scholar 

  • Hemelrijk PW, Kwa SLS, van Grondelle R and Dekker JP (1992) Spectroscopic properties of LHC II, the main light-harvesting chlorophyll a/b protein complex from chloroplast membranes. Biochim Biophys Acta 1098: 159–166

    Google Scholar 

  • Hiller RG, Anderson J and Larkum AWD (1991) The chlorophyllprotein complexes of algae. In: Scheer H (ed) Chlorophylls, pp 529–547 CRC Press, Boca Raton, FL

    Google Scholar 

  • Hinz UG and Welinder KG (1987) The light-harvesting complex of Photosystem II in barley. Structure and chlorophyll organization. Carlsberg Res Commun 52: 39–54

    Google Scholar 

  • Houssier C and Sauer K (1970) Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments. J Am Chem Soc 92: 779–791

    Google Scholar 

  • Humbeck K, Römer S and Senger H (1988) Changes in carotenoid composition and function of the photosynthetic apparatus during light-depending chloroplast differentiation in the mutant C-6D of Scenedesmus obliquus. Bot Acta 10: 220–228

    Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll a/b binding proteins. Biochim Biophys Acta 1184: 1–19

    Google Scholar 

  • Jansson S, Pichersky E, Bassi R, Green BR, Ikeuchi M, Melis A, Simpson DJ, Spangfort M, Staehelin LA and Thornber JP (1992) A nomenclatur for the genes encoding the chlorophyll a/b-binding proteins of higher plants. Plant Mol Biol Rep 10: 242–253

    Google Scholar 

  • Johnson Jr. WC (1988) Secondary structure of proteins through circular dichroism. Ann Rev Biophys Biophys Chem 17: 145–166

    Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Google Scholar 

  • Larkum AWD and Barrett J (1983) Pigment protein (lightharvesting) complexes. In: Woolhouse HW (ed) Advances in Bot Research Vol 10, pp 102–185. Academic Press, New York

    Google Scholar 

  • Long Z, Wang SY and Nelson N (1989) Cloning and nuleotide sequence of genes coding for the major chlorophyll-binding protein of the moss Physcomitrella patens and the halotolerant alga Dunaliella salina. Gene 76: 299–312

    Google Scholar 

  • Matthijs HCP, van der Straay GWM, van Amerongen H, van Grondelle R and Garab G (1989) Structural organization of chlorophyll b in the prochlorophyte Prochlorothrix hollandica. Biochim Biophys Acta 975: 185–187

    Google Scholar 

  • Meyer M (1993) Untersuchungen zur Pigment-Protein Interaktion in algalen membranintrinsischen Lichtantennen durch in vitro Rekonstitution und Charakterisierung der gewonnenen Pigment-Protein Komplexe. Dissertation, Universität Mainz

  • Meyer M and Wilhelm C (1993) Reconstitution of light-harvesting complexes from Chlorella fusca (Chlorophyceae) and Mantoniella squamata (Prasinophyceae). Z Naturforsch 48c: 461–473

    Google Scholar 

  • Nabedryk E, Andrianambinintsoa S and Breton J (1984) Transmembrane orientation of α-helices in the thylakoid membrane and in the light-harvesting complex. Biochim Biophys Acta 765: 380–387

    Google Scholar 

  • Nussberger S, Dekker JP, Kühlbrandt W, van Bolhuis BM, van Grondelle R and van Amerongen H (1994) Spectroscopic characterization of three different moromeric forms of the main chlorophyll a/b binding protein from chloroplasts membranes. Biochemistry 33: 14775–14783

    Google Scholar 

  • Paulsen H and Hobe S (1992) Pigment-binding properties of mutant light-harvesting chlorophyll a/b-binding protein. Eur J Biochem 205: 71–76

    Google Scholar 

  • Paulsen H and Kuttkat A (1993) Pigment complexes of lightharvesting chlorophyll a/b binding protein are stabilized by a segment in the carboxyterminal hydrophilic domain of the protein. Photochem Photobiol 57: 139–142

    Google Scholar 

  • Paulsen H, Finkenzeller B and Kühlein N (1993) Pigments induce folding of light-harvesting chlorophyll a/b-binding protein. Eur J Biochem 215: 809–816

    Google Scholar 

  • Paulsen H, Rümler U and Rüdiger W (1990) Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b-binding protein overexpressed in Escherichia coli. Planta 181: 204–211

    Google Scholar 

  • Pearlstein RM (1991) Theoretical interpretations of antenna spectra. In: Scheer H (ed) Chlorophylls, pp 1047–1078. CRC Press, Boca Raton, FL

    Google Scholar 

  • Plumley FG and Schmidt GW (1987) Reconstitution of chlorophyll a/b light-harvesting complexes: Xanthophyll-dependend assembly and energy transfer. Proc Natl Acad Sci USA 84: 146–150

    Google Scholar 

  • Provencher SW and Glöckner J (1981) Estimation of globular protein seondary structure from circular dichroism. Biochem 20: 33–37

    Google Scholar 

  • Shepanski JF and Knox R (1981) Circular dichroism and other optical properties of antenna chlorophyll proteins from higher plants. Isr J Chem 21: 352–331

    Google Scholar 

  • Sukenik A, Wyman KD, Bennet J and Falkowsky P (1987) A novel mechnism for regulating the excitation of Photosystem II in a green alga. Nature 327: 704–707

    Google Scholar 

  • Thomber JP, Cogdell RJ, Chitnis P, Morishige DT, Peter GF, Gomez SM, Anadan S, Preiss S, Dreyfuss BW, Lee A, Takeuchi T and Kerfeld C (1994) Antenna pigment-protein complexes of higher plants and purple bacteria. Adv Mol Cell Biol 10: 55–118

    Google Scholar 

  • Van Amerongen H, van Bolhuis BM, Betts S, Mei R, van Grondelle R, Yocum CF and Dekker JP (1994) Spectroscopic characterization of CP26, a chlorophyll a/b binding protein of the higher plant Photosystem II complex. Biochim Biophys Acta 1188: 227–234

    Google Scholar 

  • Van Dorssen RJ, Vasmel H and Amesz J (1985) Antenna organization and energy transfer in membranes of Heliobacterium chlorum, Biochim Biophys Acta 809: 199–203

    Google Scholar 

  • Van Grondelle R, Dekker JP, Gillbro T and Sundstrom V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65

    Google Scholar 

  • Van Metter RL. (1977) Excitation energy transfer in the lightharvesting chlorophyll a/b protein. Biochim Biophys Acta 462: 642–658

    Google Scholar 

  • Visschers RW, Crielaard W, Fowler GJS, Hunter CN and van Grondelle R (1994) Probing the B800 bacteriochlorophyll binding site of the accessory light-harvesting complex from Rhodobacter sphaeroides using site-directed mutagenesis. II. A low temperature spectroscopy study of structural aspects of the pigmentprotein conformation. Biochim Biophys Acta 1183: 483–490

    Google Scholar 

  • Wilhelm C (1990) The biochemistry and physiology of lightharvesting processes in chlorophyll b- and chlorophyll c- containing algae. Plant Physiol Biochem 28: 293–306

    Google Scholar 

  • Wilhelm C and Lenartz-Weiler I (1987) Energy transfer and pigment composition in three chlorophyll b-containing lightharvesting complexes isolated from Mantoniella squamata (Prasinophyceae), Chlorella fusca (Chlorophyceae) and Sinapis alba. Photosynth Res 13: 101–111

    Google Scholar 

  • Wilhelm C, Kolz S, Meyer M, Schmitt A, Zuber H, Egeland E and Liaaen-Jensen S (1996) Refined carotenoid analysis of the major light-harvesting complex of Mantoniella squamata. Photosynthetica (in press)

  • Wilhelm C, Wiedemann I and May M (1990) Comparative analysis of the composition of two chlorophyll b-containing lightharvesting complexes. Planta 180: 456–457

    Google Scholar 

  • Woody RW (1985) Circular dichroism of peptides. In: The Peptides, Vol 7, pp 15–114. Academic Press, New York

    Google Scholar 

  • Ziegler R and Egle K (1965) Zur quantitativen Analyse der Chloroplastenpigmente. I. Kritische Überprüfung der spektralphotometrischen Chlorophyllbestimmung. Beitr Biol Pflanzen 41: 11–36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, M., Wilhelm, C. & Garab, G. Pigment-pigment interactions and secondary structure of reconstituted algal chlorophyll a/b-binding light-harvesting complexes of Chlorella fusca with different pigment compositions and pigment-protein stoichiometries. Photosynth Res 49, 71–81 (1996). https://doi.org/10.1007/BF00029429

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00029429

Key words

Navigation